Abstract

The effectiveness of the smoke control strategy plays an important role in increasing safety levels when fire accidents occur in road tunnels. This paper introduces clarifications about how the efficiency of smoke extraction control using solid curtains can be increased by placing smoke extraction vents close to the solid curtains. The effect of adding a solid curtain with different heights and at various positions relative to a smoke extraction vent was studied in this paper. A 14.3% increase in the vent flowrate occurs at the time corresponding to the fire peak heat release rate when the distance between the solid curtain and the vent is equivalent to 90% of the tunnel height and when the solid curtain height is equal to 16% of the tunnel height. High temperature and low visibility conditions occur near the solid curtain at the smoke-trapped area when the smoke curtain height exceeds 40% of the tunnel height. Using a solid curtain positioned far away from the vent with a distance equals to 90% of the tunnel height and with a height in the range from 16% to 30% of the tunnel height achieves the best results in terms of suppression of smoke spread and attaining acceptable visibility and temperature levels at the region where the smoke is trapped by the solid curtain.

References

References
1.
Kunsch
,
J.
,
2002
, “
Simple Model for Control of Fire Gases in a Ventilated Tunnel
,”
Fire Saf. J.
,
37
(
1
), pp.
67
81
. 10.1016/S0379-7112(01)00020-0
2.
Kurioka
,
H.
,
Oka
,
Y.
,
Satoh
,
H.
, and
Sugawa
,
O.
,
2003
, “
Fire Properties in Near Field of Square Fire Source With Longitudinal Ventilation in Tunnels
,”
Fire Saf. J.
,
38
(
4
), pp.
319
340
. 10.1016/S0379-7112(02)00089-9
3.
Xu
,
Q.-q.
,
Yi
,
L.
,
Xu
,
Z.-s.
, and
Wu
,
D.-x.
,
2013
, “
Preliminary Study on Exhaust Efficiency of Smoke Management System in Tunnel Fires
,”
Procedia Eng.
,
52
, pp.
514
519
. 10.1016/j.proeng.2013.02.177
4.
Yang
,
D.
,
Liu
,
Y.
,
Zhao
,
C.
, and
Mao
,
S.
,
2017
, “
Multiple Steady States of Fire Smoke Transport in a Multi-branch Tunnel: Theoretical and Numerical Studies
,”
Tunnelling Underground Space Technol.
,
61
, pp.
189
197
. 10.1016/j.tust.2016.10.009
5.
Du
,
T.
,
Yang
,
D.
,
Peng
,
S.
, and
Xiao
,
Y.
,
2015
, “
A Method for Design of Smoke Control of Urban Traffic Link Tunnel (UTLT) Using Longitudinal Ventilation
,”
Tunnelling Underground Space Technol.
,
48
, pp.
35
42
. 10.1016/j.tust.2015.02.001
6.
Yang
,
D.
,
Ding
,
Y.
,
Du
,
T.
,
Mao
,
S.
, and
Zhang
,
Z.
,
2018
, “
Buoyant Back-Layering and the Critical Condition for Preventing Back-Layering Fluid in Inclined Tunnels Under Natural Ventilation: Brine Water Experiments
,”
Exp. Therm. Fluid. Sci.
,
90
, pp.
319
329
. 10.1016/j.expthermflusci.2017.08.015
7.
Liang
,
Q.
,
Li
,
Y.
,
Li
,
J.
,
Xu
,
H.
, and
Li
,
K.
,
2017
, “
Numerical Studies on the Smoke Control by Water Mist Screens With Transverse Ventilation in Tunnel Fires
,”
Tunnelling Underground Space Technol.
,
64
, pp.
177
183
. 10.1016/j.tust.2017.01.017
8.
Sun
,
J.
,
Fang
,
Z.
,
Tang
,
Z.
,
Beji
,
T.
, and
Merci
,
B.
,
2016
, “
Experimental Study of the Effectiveness of a Water System in Blocking Fire-Induced Smoke and Heat in Reduced-Scale Tunnel Tests
,”
Tunnelling Underground Space Technol.
,
56
, pp.
34
44
. 10.1016/j.tust.2016.02.005
9.
Wang
,
Z.
,
Wang
,
X.
,
Huang
,
Y.
,
Tao
,
C.
, and
Zhang
,
H.
,
2018
, “
Experimental Study on Fire Smoke Control Using Water Mist Curtain in Channel
,”
J. Hazard. Mater.
,
342
, pp.
231
241
. 10.1016/j.jhazmat.2017.08.026
10.
Zhang
,
P.
,
Tang
,
X.
,
Tian
,
X.
,
Liu
,
C.
, and
Zhong
,
M.
,
2016
, “
Experimental Study on the Interaction Between Fire and Water Mist in Long and Narrow Spaces
,”
Appl. Therm. Eng.
,
94
, pp.
706
714
. 10.1016/j.applthermaleng.2015.10.110
11.
Jung
,
U.-H.
,
Kim
,
S.
,
Yang
,
S.-H.
,
Kim
,
J.-H.
, and
Choi
,
Y.-S.
,
2016
, “
Numerical Study of Air Curtain Systems for Blocking Smoke in Tunnel Fires
,”
J. Mech. Sci. Technol.
,
30
(
11
), pp.
4961
4969
. 10.1007/s12206-016-1016-6
12.
Juraeva
,
M.
,
Ryu
,
K. J.
,
Jeong
,
S.-H.
, and
Song
,
D. J.
,
2014
, “
Numerical Optimization Study to Install Air Curtain in a Subway Tunnel by Using Design of Experiment
,”
J. Mech. Sci. Technol.
,
28
(
1
), pp.
183
190
. 10.1007/s12206-013-0947-4
13.
Luo
,
N.
,
Li
,
A.
,
Gao
,
R.
,
Zhang
,
W.
, and
Tian
,
Z.
,
2013
, “
An Experiment and Simulation of Smoke Confinement Utilizing an Air Curtain
,”
Saf. Sci.
,
59
, pp.
10
18
. 10.1016/j.ssci.2013.04.009
14.
Öttl
,
D.
,
Sturm
,
P.
,
Almbauer
,
R.
,
Öttl
,
W.
,
Thurner
,
A.
, and
Seitlinger
,
G.
,
2002
, “
A New System to Reduce the Velocity of the Air Flow in the Case of Fire
,”
Proceedings of Tunnel Safety and Ventilation
,
Graz, Austria
,
Apr. 8–10
.
15.
Kohl
,
K.-J.
,
Kutz
,
M.
, and
Wieneck
,
F.
,
2005
, “
Die Wirkung von mobilen Abschottungs- und Belüftungsmassnahmen bei der Rettung und Brandbekämpfung bei Tunnelbränden—Teil 2
,” No. 141, Brandschutzforschung der Bundesländer.
16.
Bettelini
,
M.
,
Rigert
,
S.
, and
Seifert
,
N.
,
2012
, “
Flexible Devices for Smoke Control in Road Tunnels
,”
Proceedings of 6th International Conference ‘Tunnel Safety and Ventilation
,
Graz, Austria
,
Apr. 23–25
.
17.
Seike
,
M.
,
Kawabata
,
N.
, and
Hasegawa
,
M.
,
2014
, “
The Effect of Fixed Smoke Barriers on Evacuation Environment in Road Tunnel Fires With Natural Ventilation
,”
Proceedings of 7th International Conference ‘Tunnel Safety and Ventilation
,
Graz, Austria
,
May 12–13
, pp.
126
132
.
18.
Ingason
,
H.
,
Gustavsson
,
S.
, and
Dahlberg
,
M.
,
1994
, “
Heat Release Rate Measurements in Tunnel Fires
,” Brandforsk project 723-924.
19.
McDermott
,
R.
,
McGrattan
,
K.
, and
Hostikka
,
S.
,
2008
,
Fire Dynamics Simulator (Version 5) Technical Reference Guide
, Vol.
1018
,
NIST Special Publication
,
Gaithersburg, MD
, p.
5
.
20.
Forney
,
G. P.
,
2013
, “
Smokeview (Version 6)-A Tool for Visualizing Fire Dynamics Simulation Data Volume II: Technical Reference Guide
.”.
21.
Thornton
,
C.
,
O’Konski
,
R.
,
Hardeman
,
B.
, and
Swenson
,
D.
,
2011
, “Pathfinder: An Agent-Based Egress Simulator,”
Pedestrian and Evacuation Dynamics
,
R.
Peacock
,
E.
Kuligowski
, and
J.
Averill
, eds.,
Springer
,
Boston, MA
, pp.
889
892
.
22.
Helbing
,
D.
,
Farkas
,
I. J.
,
Molnar
,
P.
, and
Vicsek
,
T.
,
2002
,
Pedestrian Evacuation Dynamics
,
Springer
,
Berlin, Heidelberg
, pp.
21
58
.
23.
Korhonen
,
T.
,
Hostikka
,
S.
,
Heliövaara
,
S.
, and
Ehtamo
,
H.
,
2010
, “FDS+Evac: An Agent Based Fire Evacuation Model,”
Pedestrian and Evacuation Dynamics 2008
,
W.
Klingsch
,
C.
Rogsch
,
A.
Schadschneider
, and
M.
Schreckenberg
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
109
120
.
24.
Zhou
,
T.
,
He
,
Y.
,
Lin
,
X.
,
Wang
,
X.
, and
Wang
,
J.
,
2017
, “
Influence of Constraint Effect of Sidewall on Maximum Smoke Temperature Distribution Under a Tunnel Ceiling
,”
Appl. Therm. Eng.
,
112
, pp.
932
941
. 10.1016/j.applthermaleng.2016.10.111
25.
Alpert
,
R. L.
,
1972
, “
Calculation of Response Time of Ceiling-Mounted Fire Detectors
,”
Fire Technol.
,
8
(
3
), pp.
181
195
. 10.1007/BF02590543
26.
Petterson
,
N. M.
,
2002
, “
Assessing the Feasibility of Reducing the Grid Resolution in FDS Field Modelling
,𠇍
ME Fire Degree, University of Canterbury, Christchurch, New Zealand
.
27.
Association
,
N. F. P.
,
2011
, NFPA 502, Standard for Road Tunnels, Bridges, and Other Limited Access Highways, NFPA.
28.
Jin
,
T.
,
1997
, “
Studies on Human Behavior and Tenability in Fire Smoke
,”
Fire Saf. Sci.
,
5
, pp.
3
21
. 10.3801/IAFSS.FSS.5-3
29.
Mulholland
,
G. W.
, and
Croarkin
,
C.
,
2000
, “
Specific Extinction Coefficient of Flame Generated Smoke
,”
Fire Mater.
,
24
(
5
), pp.
227
230
. 10.1002/1099-1018(200009/10)24:5<227::AID-FAM742>3.0.CO;2-9
You do not currently have access to this content.