Abstract

Comparative analysis of the thermal and hydraulic performance of three-fluid tubular heat exchanger has been carried out numerically. Single-phase and multi-phase approaches for the turbulent flow of CuO–water nanofluids have been applied. The effect of Reynolds number (2500–10,000) and volume concentration of nanoparticles (0–3%) on the overall performance of the selected heat exchanger has been investigated. The numerical simulation has been performed using a finite volume approach in commercial computational fluid dynamics (CFD) software for two flow arrangements (parallel and counter). Nusselt number was found to increase with the growth in Reynolds number as well as volume concentration of nanoparticles in both the flow arrangements. Particularly, for a maximum volume concentration of nanoparticles (φ = 3%), single-phase approach resulted in an increase of 8.94% for parallel and 11.52% for counterflow arrangements. However, multi-phase approach produced a remarkable increase of 30.37% for parallel and 32.04% for counterflow arrangement. Single-phase approach was applied for treating the nanofluids as homogenous fluids with effective thermophysical properties, meaning that the entire suspension is assumed to act as a single unit with the same velocity. However, the multi-phase model was applied to separately treat the two phases with different velocities.

References

1.
Saeid
,
N. H.
, and
Seetharamu
,
K. N.
,
2006
, “
Finite Element Analysis for Co-Current and Counter-Current Parallel Flow Three-Fluid Heat Exchanger
,”
Int. J. Numer. Methods Heat Fluid Flow
,
16
(
3
), pp.
324
337
. 10.1108/09615530610649744
2.
Willis
,
N. C.
, and
Chapman
,
A. J.
,
1968
, “
Analysis of Three-Fluid, Crossflow Heat Exchangers
,”
ASME J. Heat Transfer
,
90
(
3
), pp.
333
339
. 10.1115/1.3597512
3.
Sekulić
,
D. P.
, and
Shah
,
R. K.
,
1995
, “
Thermal Design Theory of Three-Fluid Heat Exchangers
,”
Adv. Heat Transfer
,
26
, pp.
219
328
. 10.1016/S0065-2717(08)70297-1
4.
Garcı´a-Valladares
,
O.
,
2004
, “
Numerical Simulation of Triple Concentric-Tube Heat Exchangers
,”
Int. J. Therm. Sci.
,
43
(
10
), pp.
979
991
. 10.1016/j.ijthermalsci.2004.02.006
5.
Sekulić
,
D. P.
,
1994
, “
A Compact Solution of the Parallel Flow Three-Fluid Heat Exchanger Problem
,”
Int. J. Heat Mass Transfer
,
37
(
14
), pp.
2183
2187
. 10.1016/0017-9310(94)90320-4
6.
Sorlie
,
T.
,
1962
, “Three Fluid Heat Exchanger Design Theory: Counter and Parallel-Flow,” Technical Report No. 54, Department of Mechanical Engineering, Stanford University.
7.
Ünal
,
A.
,
1998
, “
Theoretical Analysis of Triple Concentric-Tube Heat Exchangers Part 1: Mathematical Modelling
,”
Int. Commun. Heat Mass Transfer
,
25
(
7
), pp.
949
958
. 10.1016/S0735-1933(98)00086-4
8.
Shrivastava
,
D.
, and
Ameel
,
T. A.
,
2004
, “
Three-Fluid Heat Exchangers With Three Thermal Communications. Part A: General Mathematical Model
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3855
3865
. 10.1016/j.ijheatmasstransfer.2004.03.021
9.
Mishra
,
M.
, and
Sahoo
,
P. K.
,
2010
, “
The Effect of Temperature Nonuniformities on Transient Behaviour of Three-Fluid Crossflow Heat Exchanger
,”
Eng. Lett.
,
18
(
3
), pp.
297
302
.
10.
Mishra
,
M.
,
Das
,
P. K.
, and
Sarangi
,
S.
,
2008
, “
Dynamic Behavior of Three-Fluid Crossflow Heat Exchangers
,”
ASME J. Heat Transfer
,
130
(
1
), p.
011801
. 10.1115/1.2401616
11.
Veerabhadrappa
,
K.
,
Vinayakaraddy
,
G.
,
Seetharamu
,
K. N.
,
Hegde
,
P. G.
, and
Krishna
,
V.
,
2016
, “
Transient Behavior of Three-Fluid Heat Exchanger With Three Thermal Communications Under Step Change in Inlet Temperature of Fluids Using Finite Element Method
,”
Appl. Therm. Eng.
,
108
, pp.
1390
1400
. 10.1016/j.applthermaleng.2016.08.008
12.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME FED
,
231
, pp.
99
103
.
13.
Bahiraei
,
M.
,
Rahmani
,
R.
,
Yaghoobi
,
A.
,
Khodabandeh
,
E.
,
Mashayekhi
,
R.
, and
Amani
,
M.
,
2018
, “
Recent Research Contributions Concerning Use of Nanofluids in Heat Exchangers: A Critical Review
,”
Appl. Therm. Eng.
,
133
, pp.
137
159
. 10.1016/j.applthermaleng.2018.01.041
14.
Hussein
,
A. M.
,
Bakar
,
R. A.
, and
Kadirgama
,
K.
,
2014
, “
Study of Forced Convection Nanofluid Heat Transfer in the Automotive Cooling System
,”
Case Stud. Therm. Eng.
,
2
, pp.
50
61
. 10.1016/j.csite.2013.12.001
15.
Bozorgan
,
N.
,
Mafi
,
M.
, and
Bozorgan
,
N.
,
2012
, “
Performance Evaluation of Al2O3/Water Nanofluid as Coolant in a Double-Tube Heat Exchanger Flowing Under a Turbulent Flow Regime
,”
Adv. Mech. Eng.
,
89
, pp.
1
8
.
16.
Ehsan
,
M. M.
,
Noor
,
S.
,
Salehin
,
S.
, and
Islam
,
A. S.
,
2016
,
Thermofluid Modeling for Energy Efficiency Applications
,
Academic Press, Elsevier
,
New York
, pp.
73
101
.
17.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2010
, “
Numerical Simulation of Water/Al2O3 Nanofluid Turbulent Convection
,”
Adv. Mech. Eng.
,
2
, p.
10
. 10.1155/2010/976254
18.
Kumar
,
S.
,
Maheshwari
,
N.
, and
Tripathi
,
B.
,
2015
, “
Computational Analysis of Different Nanofluids Effect on Convective Heat Transfer Enhancement of Double Tube Helical Heat Exchanger
,”
Int J. Sci. Eng. Appl. Sci.
,
4
, pp.
444
451
.
19.
Aly
,
W. I.
,
2014
, “
Numerical Study on Turbulent Heat Transfer and Pressure Drop of Nanofluid in Coiled Tube-in-Tube Heat Exchangers
,”
Energy Convers. Manage.
,
79
, pp.
304
316
. 10.1016/j.enconman.2013.12.031
20.
Said
,
Z.
,
Saidur
,
R.
,
Rahim
,
N. A.
, and
Alim
,
M. A.
,
2014
, “
Analyses of Exergy Efficiency and Pumping Power for a Conventional Flat Plate Solar Collector Using SWCNTs Based Nanofluid
,”
Energy Build.
,
78
, pp.
1
9
. 10.1016/j.enbuild.2014.03.061
21.
Goharkhah
,
M.
, and
Ashjaee
,
M.
,
2014
, “
Effect of an Alternating Nonuniform Magnetic Field on Ferrofluid Flow and Heat Transfer in a Channel
,”
J. Magn. Magn. Mater.
,
362
, pp.
80
89
. 10.1016/j.jmmm.2014.03.025
22.
Bahiraei
,
M.
,
Naghibzadeh
,
S. M.
, and
Jamshidmofid
,
M.
,
2017
, “
Efficacy of an Eco-Friendly Nanofluid in a Miniature Heat Exchanger Regarding to Arrangement of Silver Nanoparticles
,”
Energy Convers. Manage.
,
144
, pp.
224
234
. 10.1016/j.enconman.2017.04.076
23.
Bahiraei
,
M.
,
Jamshidmofid
,
M.
, and
Heshmatian
,
S.
,
2017
, “
Entropy Generation in a Heat Exchanger Working With a Biological Nanofluid Considering Heterogeneous Particle Distribution
,”
Adv. Powder Technol.
,
28
(
9
), pp.
2380
2392
. 10.1016/j.apt.2017.06.021
24.
Bahiraei
,
M.
,
Jamshidmofid
,
M.
,
Amani
,
M.
, and
Barzegarian
,
R.
,
2018
, “
Investigating Exergy Destruction and Entropy Generation for Flow of a New Nanofluid Containing Graphene–Silver Nanocomposite in a Micro Heat Exchanger Considering Viscous Dissipation
,”
Powder Technol.
,
336
, pp.
298
310
. 10.1016/j.powtec.2018.06.007
25.
Ibrahim
,
T. A.
, and
Gomaa
,
A.
,
2009
, “
Thermal Performance Criteria of Elliptic Tube Bundle in Crossflow
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2148
2158
. 10.1016/j.ijthermalsci.2009.03.011
26.
Akbari
,
M.
,
Galanis
,
N.
, and
Behzadmehr
,
A.
,
2011
, “
Comparative Analysis of Single and Two-Phase Models for CFD Studies of Nanofluid Heat Transfer
,”
Int. J. Therm. Sci.
,
50
(
8
), pp.
1343
1354
. 10.1016/j.ijthermalsci.2011.03.008
27.
Kalteh
,
M.
,
Abbassi
,
A.
,
Saffar-Avval
,
M.
,
Frijns
,
A.
,
Darhuber
,
A.
, and
Harting
,
J.
,
2012
, “
Experimental and Numerical Investigation of Nanofluid Forced Convection Inside a Wide Microchannel Heat Sink
,”
Appl. Therm. Eng.
,
36
, pp.
260
268
. 10.1016/j.applthermaleng.2011.10.023
28.
Lotfi
,
R.
,
Saboohi
,
Y.
, and
Rashidi
,
A. M.
,
2010
, “
Numerical Study of Forced Convective Heat Transfer of Nanofluids: Comparison of Different Approaches
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
74
78
. 10.1016/j.icheatmasstransfer.2009.07.013
29.
Hamid
,
M.
,
Usman
,
M.
,
Zubair
,
T.
,
Haq
,
R. U.
, and
Wang
,
W.
,
2018
, “
Shape Effects of MoS2 Nanoparticles on Rotating Flow of Nanofluid Along a Stretching Surface With Variable Thermal Conductivity: A Galerkin Approach
,”
Int. J. Heat Mass Transfer
,
124
, pp.
706
714
. 10.1016/j.ijheatmasstransfer.2018.03.108
30.
Usman
,
M.
,
Hamid
,
M.
,
Haq
,
R. U.
, and
Wang
,
W.
,
2018
, “
Heat and Fluid Flow of Water and Ethylene-Glycol Based Cu-Nanoparticles Between Two Parallel Squeezing Porous Disks: LSGM Approach
,”
Int. J. Heat Mass Transfer
,
123
, pp.
888
895
. 10.1016/j.ijheatmasstransfer.2018.03.030
31.
Usman
,
M.
,
Hamid
,
M.
,
Zubair
,
T.
,
Haq
,
R. U.
, and
Wang
,
W.
,
2018
, “
Cu-Al2O3/Water Hybrid Nanofluid Through a Permeable Surface in the Presence of Nonlinear Radiation and Variable Thermal Conductivity via LSM
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1347
1356
. 10.1016/j.ijheatmasstransfer.2018.06.005
32.
Usman
,
M.
,
Haq
,
R. U.
,
Hamid
,
M.
, and
Wang
,
W.
,
2018
, “
Least Square Study of Heat Transfer of Water Based Cu and Ag Nanoparticles Along a Converging/Diverging Channel
,”
J. Mol. Liq.
,
249
, pp.
856
867
. 10.1016/j.molliq.2017.11.047
33.
Suganthi
,
K. S.
, and
Rajan
,
K. S.
,
2017
, “
Metal Oxide Nanofluids: Review of Formulation, Thermo-Physical Properties, Mechanisms, and Heat Transfer Performance
,”
Renewable Sustainable Energy Rev.
,
76
, pp.
226
255
. 10.1016/j.rser.2017.03.043
34.
Amanuel
,
T.
, and
Mishra
,
M.
,
2018
, “
Investigation of Thermohydraulic Performance of Triple Concentric-Tube Heat Exchanger With CuO/Water Nanofluid: Numerical Approach
,”
Heat Transfer Res.
,
47
(
8
), pp.
974
995
. 10.1002/htj.21361
35.
Manninen
,
M.
,
Taivassalo
,
V.
, and
Kallio
,
S.
,
1996
,
On the Mixture Model for Multiphase Flow
, VTT Publications 288,
Technical Research Center of Finland
,
Finland
.
36.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Therm. Sci.
,
44
(
4
), pp.
367
373
. 10.1016/j.ijthermalsci.2004.12.005
37.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
. 10.1080/08916159808946559
38.
Anbazhagan
,
N.
, and
Rejikumar
,
R.
,
2013
, “
Analysis of Heat Transfer Coefficient of Nanofluids
,”
Int. J. Eng. Res. Tech.
,
2
, pp.
1839
1850
.
39.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2008
, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042412
. 10.1115/1.2818775
40.
Ali
,
M.
, and
Zeitoun
,
O.
,
2009
, “
Nanofluids Forced Convection Heat Transfer Inside Circular Tubes
,”
Int. J. Nanopart.
,
2
, pp.
164
172
. 10.1504/IJNP.2009.028749
41.
Krishna
,
S. R.
, and
Sivashanmugam
,
P. C. F. D.
,
2010
, “
CFD Analysis of Heat Transfer Characteristics of Nanofluids in a Circular Tube Fitted With Helical Inserts in Laminar Flow
,”
IUP J. Chem. Eng.
,
2
(
2
), pp.
19
34
.
42.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2010
, “
An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluids Flowing Under a Turbulent Flow Regime
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
334
344
. 10.1016/j.ijheatmasstransfer.2009.09.024
43.
Saghir
,
M. Z.
,
Ahadi
,
A.
,
Yousefi
,
T.
, and
Farahbakhsh
,
B.
,
2016
, “
Two-Phase and Single Phase Models of Flow of Nanofluid in a Square Cavity: Comparison With Experimental Results
,”
Int. J. Therm. Sci.
,
100
, pp.
372
380
. 10.1016/j.ijthermalsci.2015.10.005
44.
Ishii
,
M.
, and
Hibiki
,
T.
,
2010
,
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer
,
NY
.
45.
Ishii
,
M.
, and
Mishima
,
K.
,
1984
, “
Two-Fluid Model and Hydrodynamic Constitutive Relations
,”
Nucl. Eng. Des.
,
82
(
2–3
), pp.
107
126
. 10.1016/0029-5493(84)90207-3
46.
Yang
,
Y. T.
,
Tang
,
H. W.
, and
Jian
,
S. J.
,
2016
, “
Numerical Simulation and Optimization of Turbulent Nanofluids in a Three-Dimensional Wavy Channel
,”
Numer. Heat Transf. Part A Appl.
,
69
(
10
), pp.
1169
1185
. 10.1080/10407782.2015.1125729
47.
Schiller
,
L.
, and
Naumann
,
Z.
,
1933
, “
A Drag Coefficient Correlation
,”
VDI Zeitung
,
77
, pp.
318
320
.
48.
Argyropoulos
,
C. D.
, and
Markatos
,
N. C.
,
2015
, “
Recent Advances on the Numerical Modelling of Turbulent Flows
,”
Appl. Math. Model.
,
39
(
2
), pp.
693
732
. 10.1016/j.apm.2014.07.001
49.
Mohammed
,
H. A.
,
Abbas
,
A. K.
, and
Sheriff
,
J. M.
,
2013
, “
Influence of Geometrical Parameters and Forced Convective Heat Transfer in Transversely Corrugated Circular Tubes
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
116
126
. 10.1016/j.icheatmasstransfer.2013.02.005
50.
Lee
,
S.
,
Choi
,
S. S.
,
Li
,
S. A.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
. 10.1115/1.2825978
51.
Gomaa
,
A.
,
Halim
,
M. A.
, and
Elsaid
,
A. M.
,
2016
, “
Experimental and Numerical Investigations of a Triple Concentric-Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
99
, pp.
1303
1315
. 10.1016/j.applthermaleng.2015.12.053
52.
Singh
,
S. K.
,
Mishra
,
M.
, and
Jha
,
P. K.
,
2015
, “
Experimental Investigations on Thermo-Hydraulic Behaviour of Triple Concentric-Tube Heat Exchanger
,”
Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng.
,
229
(
4
), pp.
299
308
. 10.1177/0954408914531118
53.
Albojamal
,
A.
, and
Vafai
,
K.
,
2017
, “
Analysis of Single Phase, Discrete and Mixture Models, in Predicting Nanofluid Transport
,”
Int. J. Heat Mass Transfer
,
114
, pp.
225
237
. 10.1016/j.ijheatmasstransfer.2017.06.030
You do not currently have access to this content.