Abstract

This study aims at developing a numerical model that can be employed for simulating the thermomechanical treatment to develop the advanced high strength steels. The developed numerical method is used to calculate the heat transfer coefficient of the quenching medium during the continuous cooling of the steel using the inverse heat transfer model for predefined cooling paths. Further, the phase transformation models are used to predict the final microstructure of the steel plate. The cooling rate, plate thickness, and rolling speed are varied to evaluate the temperature and microstructure distribution in the steel plate. It is found that on increasing the quenching time, the transformation fraction from austenite to ferrite and bainite phases increases and the corresponding martensite fraction decreases. The temperature variation in the plate is significant due to the change in plate thickness and rolling speed for a given quenching time. The present model will be useful for designing process parameters to obtain desired microstructures in third-generation advanced high strength steels.

References

References
1.
Takumi
,
I.
,
Seiji
,
F.
, and
Akio
,
O.
,
2008
, “
Overview and Application of Steel Materials for High-Rise Buildings
,”
JFE GIHO
No. 21, pp.
1
7
.
2.
Weng
,
Y.
,
Dong
,
H.
, and
Gan
,
Y.
,
2011
,
Advanced Steels: The Recent Scenario in Steel Science and Technology
,
Metallurgical Industry Press
,
Beijing
and Springer-Verlag, Berlin, pp.
36
38
.
3.
Abdallah
,
Z.
,
Perkins
,
K.
, and
Arnold
,
C.
,
2018
,
Creep Lifing Models and Techniques
,
IntechOpen Limited, UK
.
4.
Ennis
,
P. J.
, and
Czyrska-Filemonowicz
,
A.
,
2003
, “
Recent Advances in Creep-Resistant Steels for Power Plant Applications
,”
Sadhana
,
28
(
3–4
), pp.
709
730
. 10.1007/BF02706455
5.
Grajcar
,
A.
,
Kuziak
,
R.
, and
Zalecki
,
W.
,
2012
, “
Third Generation of AHSS With Increased Fraction of Retained Austenite for the Automotive Industry
,”
Arch. Civil Mech. Eng.
,
12
(
3
), pp.
334
341
. 10.1016/j.acme.2012.06.011
6.
Wang
,
L.
, and
Speer
,
J. G.
,
2013
, “
Quenching and Partitioning Steel Heat Treatment
,”
Metallogr., Microstruct., Anal.
,
2
(
4
), pp.
268
281
. 10.1007/s13632-013-0082-8
7.
Dong
,
H.
,
2012
, “
High Performance Steels: Initiatives and Practise
,”
Sci. China Technol. Sci.
,
55
(
7
), pp.
1774
1790
. 10.1007/s11431-012-4911-9
8.
Hasan
,
H. S.
, and
Peet
,
M. J.
,
2012
, “
Heat Transfer Coefficient and Latent Heat of Martensite in a Medium-Carbon Steel
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1519
1521
. 10.1016/j.icheatmasstransfer.2012.09.008
9.
Ojha
,
S.
,
Mishra
,
N. S.
, and
Jha
,
B. K.
,
2015
, “
Effect of Cooling Rate on the Microstructure and Mechanical Properties of a C–Mn–Cr–B Steel
,”
Bull. Mater. Sci.
,
38
(
2
), pp.
531
536
. 10.1007/s12034-015-0862-7
10.
Bhadeshia
,
H. K. D. H.
,
2001
,
Encyclopedia of Materials: Science and Technology
, 1st ed.,
Pergamon
,
New York
.
11.
Serajzadeh
,
S.
,
2004
, “
Modelling of Temperature History and Phase Transformation During Cooling of Steels
,”
J. Mater. Process. Technol.
,
146
(
3
), pp.
311
317
. 10.1016/j.jmatprotec.2003.11.010
12.
Pham
,
T. T.
,
Hawbolt
,
E. B.
, and
Brimacombe
,
J. K.
,
1995
, “
Predicting the Onset of Transformation Under Noncontinuous Cooling Conditions: Part 1. Theory
,”
Metall. Mater. Trans. A
,
26
(
8
), pp.
1987
1992
. 10.1007/BF02670670
13.
Pham
,
T.
,
Hawbolt
,
E.
, and
Brimacombe
,
J.
,
1995
, “
Predicting the Onset of Transformation Under Noncontinuous Cooling Conditions: Part 2. Application to the Austenite Pearlite Transformation
,”
Metall. Mater. Trans. A
,
26
(
8
), pp.
1993
2000
. 10.1007/BF02670671
14.
Huiping
,
L.
,
Guoqun
,
Z.
,
Shanting
,
N.
, and
Yiguo
,
L.
,
2006
, “
Inverse Heat Conduction Analysis of Quenching Process Using Finite-Element and Optimization Method
,”
Finite Elem. Anal. Des.
,
42
(
12
), pp.
1087
1096
. 10.1016/j.finel.2006.04.002
15.
Hasan
,
H. S.
,
Peet
,
M. J.
,
Jalil
,
J. M.
, and
Bhadeshia
,
H. K. D. H.
,
2011
, “
Heat Transfer Coefficients During Quenching of Steels
,”
Heat Mass Transfer
,
47
(
3
), pp.
315
321
. 10.1007/s00231-010-0721-4
16.
Fernandes
,
F.
,
Denis
,
S.
, and
Simon
,
A.
,
1985
, “
Mathematical Model Coupling Phase Transformation and Temperature Evolution During Quenching of Steels
,”
Mater. Sci. Technol.
,
1
(
10
), pp.
838
844
. 10.1179/mst.1985.1.10.838
17.
Fabian
,
P.
,
Meško
,
J.
, and
Nikolić
,
R. R.
,
2017
, “
Simulation of Quenching Process of Steels Creating Complex Carbides
,”
FME Trans.
,
45
(
4
), pp.
510
516
. 10.5937/fmet1704510F
18.
Pohjonen
,
A.
,
Somani
,
M.
, and
Porter
,
D.
,
2018
, “
Modelling of Austenite Transformation Along Arbitrary Cooling Paths
,”
Comput. Mater. Sci.
,
150
, pp.
244
251
. 10.1016/j.commatsci.2018.03.052
19.
Choi
,
K. S.
,
Liu
,
W. N.
,
Sun
,
X.
, and
Khaleel
,
M. A.
,
2009
, “
Microstructure-Based Constitutive Modeling of TRIP Steel: Prediction of Ductility and Failure Modes Under Different Loading Conditions
,”
Acta Mater.
,
57
(
8
), pp.
2592
2604
. 10.1016/j.actamat.2009.02.020
20.
Pietrzyk
,
M.
,
Kuziak
,
R.
,
Radwański
,
K.
, and
Szeliga
,
D.
,
2014
, “
Physical and Numerical Simulation of the Continuous Annealing of DP Steel Strips
,”
Steel Res. Int.
,
85
(
1
), pp.
99
111
. 10.1002/srin.201200318
21.
Rapalska
,
J.
,
Dyja
,
H.
, and
Koczurkiewicz
,
B.
,
2012
, “
The Physical and Numerical Modeling of Heat Treatment the Experimental Complex-Phase (CP) Steel
,”
Mater. Sci. Forum
,
706–709
, pp.
1497
1502
. 10.4028/www.scientific.net/MSF.706-709.1497
22.
Zhao
,
H.
,
Hu
,
X.
,
Cui
,
J.
, and
Xing
,
Z.
,
2019
, “
Kinetic Model for the Phase Transformation of High-Strength Steel Under Arbitrary Cooling Conditions
,”
Met. Mater. Int.
,
25
(
2
), pp.
381
395
. 10.1007/s12540-018-0196-2
23.
Campbell
,
P. C.
,
Hawbolt
,
E. B.
, and
Brimacombe
,
J. K.
,
1991
, “
Microstructural Engineering Applied to the Controlled Cooling of Steel Wire Rod Part III. Mathematical Model Formulation and Predictions
,”
Metall. Trans. A
,
22A
(
11
), pp.
2791
2805
. 10.1007/BF02851373
24.
Lee
,
S. J.
, and
Lee
,
Y. K.
,
2009
, “
Latent Heat of Martensitic Transformation in a Medium-Carbon Low-Alloy Steel
,”
Scr. Mater.
,
60
(
11
), pp.
1016
1019
. 10.1016/j.scriptamat.2009.02.042
25.
Deb
,
K.
,
2012
,
Optimization for Engineering Design – Algorithms and Examples
, Second,
Prentice Hall of India Pvt. Ltd.
,
New Delhi, India
.
26.
Smoljan
,
B.
,
Hanza
,
S.
,
Tomasic
,
N.
, and
Iljkic
,
D.
,
2007
, “
Computer Simulation of Microstructure Transformation in Heat Treatment Processes
,”
J. Achiev. Mater. Manuf. Eng.
,
24
(
1
), pp.
257
282
.
27.
Smoljan
,
B.
,
Iljkic
,
D.
,
Smokvina Hanza
,
S.
,
Jokic
,
M.
, and
Stic
,
L.
,
2018
, “
Computer Simulation of Mechanical Properties and Distortions During the Quenching of Steel
,”
Mater. Sci. Eng.
,
400
(
4
), p.
042053
. 10.1088/1757-899X/400/4/042053
28.
Murugaiyan
,
A.
,
Saha Podder
,
A.
,
Pandit
,
A.
,
Chandra
,
S.
,
Bhattacharjee
,
D.
, and
Ray
,
R. K.
,
2006
, “
Phase Transformations in Two C–Mn–Si–Cr Dual Phase Steels
,”
ISIJ Int.
,
46
(
10
), pp.
1489
1494
. 10.2355/isijinternational.46.1489
29.
Kang
,
S. H.
, and
Im
,
Y. T.
,
2007
, “
Three-Dimensional Thermo-Elastic-Plastic Finite Element Modelling of Quenching Process of Plain-Carbon Steel in Couple With Phase Transformation
,”
Int. J. Mech. Sci.
,
49
(
4
), pp.
423
439
. 10.1016/j.ijmecsci.2006.09.014
30.
Rohde
,
J.
, and
Jeppsson
,
A.
,
2010
, “
Literature Review of Heat Treatment Simulations With Respect to Phase Transformation, Residual Stresses and Distortion
,”
Scand. J. Metall.
,
29
(
2
), pp.
47
62
. 10.1034/j.1600-0692.2000.d01-6.x
31.
Hawbolt
,
E. B.
,
Chau
,
B.
, and
Brimacombe
,
J. K.
,
1985
, “
Kinetics of Austenite-Ferrite and Austenite-Pearlite Transformations in a 1025 Carbon Steel
,”
Metall. Trans. A
,
16
(
4
), pp.
565
578
. 10.1007/BF02814230
32.
Lusk
,
M.
, and
Jou
,
H.
,
1997
, “
On the Rule of Additivity in Phase Transformation Kinetics
,”
Metall. Mater. Trans. A
,
28
(
2
), pp.
287
291
. 10.1007/s11661-997-0131-5
33.
Zhu
,
K.
,
Chen
,
H.
,
Masse
,
J.-P.
,
Bouaziz
,
O.
, and
Gachet
,
G.
,
2013
, “
The Effect of Prior Ferrite Formation on Bainite and Martensite Transformation Kinetics in Advanced High Strength Steels
,”
Acta Mater.
,
61
(
16
), pp.
6025
6036
.10.1016/j.actamat.2013.06.043
34.
Koistinen
,
D. P.
, and
Marburger
,
R. E.
,
1959
, “
A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-Carbon Alloys and Plain Carbon Steels
,”
Acta Metall.
,
7
(
1
), pp.
59
60
. 10.1016/0001-6160(59)90170-1
35.
Van Bohemen
,
S. M. C.
, and
Sietsma
,
J.
,
2009
, “
Martensite Formation in Partially and Fully Austenitic Plain Carbon Steels
,”
Metall. Mater. Trans. A
,
40A
(
5
), pp.
1059
1068
. 10.1007/s11661-009-9796-2
36.
Huyan
,
F.
,
Hedström
,
P.
,
Höglund
,
L.
, and
Borgenstam
,
A.
,
2016
, “
A Thermodynamic-Based Model to Predict the Fraction of Martensite in Steels
,”
Metall. Mater. Trans. A
,
47
(
9
), pp.
4404
4410
. 10.1007/s11661-016-3604-6
37.
Van Bohemen
,
S. M. C.
, and
Sietsma
,
J.
,
2009
, “
Effect of Composition on Kinetics of Athermal Martensite Formation in Plain Carbon Steels
,”
Mater. Sci. Technol.
,
25
(
9
), pp.
1009
1012
. 10.1179/174328408X365838
38.
Van Bohemen
,
S. M. C.
,
2012
, “
Bainite and Martensite Start Temperature Calculated With Exponential Carbon Dependence
,”
Mater. Sci. Technol.
,
28
(
4
), pp.
487
495
. 10.1179/1743284711Y.0000000097
39.
Singh
,
M. K.
,
Yadav
,
D.
,
Arpit
,
S.
,
Mitra
,
S.
, and
Saha
,
S. K.
,
2016
, “
Effect of Nanofluid Concentration and Composition on Laminar Jet Impinged Cooling of Heated Steel Plate
,”
Appl. Therm. Eng.
,
100
, pp.
237
246
. 10.1016/j.applthermaleng.2016.01.032
40.
Mitra
,
S.
,
Saha
,
S.
,
Chakraborty
,
S.
, and
Das
,
S.
,
2012
, “
Study on Boiling Heat Transfer of Water-TiO2 and Water-MWCNT Nanofluids Based Laminar Jet Impingement on Heated Steel Surface
,”
Appl. Therm. Eng.
,
37
, pp.
353
359
. 10.1016/j.applthermaleng.2011.11.048
You do not currently have access to this content.