Abstract

Thermal performance of microchannel heat sink can be augmented by designing inlet/outlet manifolds such that fluid flow distribution is uniform across microchannels. In this work, the effect of inlet/outlet manifold configurations on the thermo-hydrodynamic performance of recharging microchannel heat sink (RMCHS) is investigated numerically. For this purpose branched, rectangular, trapezoidal, and triangular manifold configurations are considered. All the numerical simulations are performed for channel Reynolds number of 50–300 and constant heat flux of 10 W/cm2 applied on the substrate bottom surface of the RMCHS. The results reveal that branched manifold configuration shows uniform fluid flow distribution across all the microchannels of heat sink and also shows uniform temperature distribution on the substrate bottom surface of RMCHS. Branched manifold configuration reduces thermal resistance by 16% and enhances average Nusselt number by 9.5% compared to rectangular manifold configuration. However, branched manifold configuration shows higher pressure drop in spite of enhancements in thermal performance and flow distribution uniformity. Overall performance analysis indicates that RMCHS with branched manifold configuration can be advantageous for high heat flux removal applications if there is no restriction on pumping power requirement.

References

References
1.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
. 10.1016/j.applthermaleng.2016.08.063
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
. 10.1109/EDL.1981.25367
3.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Waltham MA
.
4.
Wang
,
B. X.
, and
Peng
,
X. F.
,
1994
, “
Experimental Investigation on Liquid Forced-Convection Heat Transfer Through Microchannels
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
73
82
. 10.1016/0017-9310(94)90011-6
5.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
. 10.1016/S0017-9310(01)00337-4
6.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17
), pp.
3060
3067
. 10.1016/j.ijheatmasstransfer.2006.02.011
7.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
,
2000
, “
Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
3925
3936
. 10.1016/S0017-9310(00)00045-4
8.
Owhaib
,
W.
, and
Palm
,
B.
,
2004
, “
Experimental Investigation of Single-Phase Convective Heat Transfer in Circular Microchannels
,”
Exp. Therm. Fluid Sci.
,
28
(
2
), pp.
105
110
. 10.1016/S0894-1777(03)00028-1
9.
Gunnasegaran
,
P.
,
Mohammed
,
H. A.
,
Shuaib
,
N. H.
, and
Saidur
,
R.
,
2010
, “
The Effect of Geometrical Parameters on Heat Transfer Characteristics of Microchannels Heat Sink With Different Shapes
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1078
1086
. 10.1016/j.icheatmasstransfer.2010.06.014
10.
Salimpour
,
M. R.
,
Sharifhasan
,
M.
, and
Shirani
,
E.
,
2013
, “
Constructal Optimization of Microchannel Heat Sinks With Noncircular Cross Sections
,”
Heat Transfer Eng.
,
34
(
10
), pp.
863
874
. 10.1080/01457632.2012.746552
11.
Xia
,
G. D.
,
Jia
,
Y. T.
,
Li
,
Y. F.
,
Ma
,
D. D.
, and
Cai
,
B.
,
2016
, “
Numerical Simulation and Multiobjective Optimization of a Microchannel Heat Sink With Arc-Shaped Grooves and Ribs
,”
Numer. Heat Transfer, Part A
,
70
(
9
), pp.
1041
1055
. 10.1080/10407782.2016.1230394
12.
Ghani
,
I. A.
,
Kamaruzaman
,
N.
, and
Sidik
,
N. A. C.
,
2017
, “
Heat Transfer Augmentation in a Microchannel Heat Sink With Sinusoidal Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1969
1981
. 10.1016/j.ijheatmasstransfer.2017.01.046
13.
Li
,
Y.
,
Xia
,
G.
,
Jia
,
Y.
,
Ma
,
D.
,
Cai
,
B.
, and
Wang
,
J.
,
2017
, “
Effect of Geometric Configuration on the Laminar Flow and Heat Transfer in Microchannel Heat Sinks With Cavities and Fins
,”
Numer. Heat Transfer, Part A
,
71
(
5
), pp.
528
546
. 10.1080/10407782.2016.1277940
14.
Chai
,
L.
,
Wang
,
L.
, and
Bai
,
X.
,
2019
, “
Thermohydraulic Performance of Microchannel Heat Sinks With Triangular Ribs on Sidewalls–Part 2: Average Fluid Flow and Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
128
, pp.
634
648
. 10.1016/j.ijheatmasstransfer.2018.09.027
15.
Chen
,
C.
,
Teng
,
J. T.
,
Cheng
,
C. H.
,
Jin
,
S.
,
Huang
,
S.
,
Liu
,
C.
,
Lee
,
M. T.
,
Pan
,
H. H.
, and
Greif
,
R.
,
2014
, “
A Study on Fluid Flow and Heat Transfer in Rectangular Microchannels With Various Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
69
, pp.
203
214
. 10.1016/j.ijheatmasstransfer.2013.10.018
16.
Ebrahimi
,
A.
,
Roohi
,
E.
, and
Kheradmand
,
S.
,
2015
, “
Numerical Study of Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
78
, pp.
576
583
. 10.1016/j.applthermaleng.2014.12.006
17.
Li
,
P.
,
Zhang
,
D.
,
Xie
,
Y.
, and
Xie
,
G.
,
2016
, “
Flow Structure and Heat Transfer of Non-Newtonian Fluids in Microchannel Heat Sinks With Dimples and Protrusions
,”
Appl. Therm. Eng.
,
94
, pp.
50
58
. 10.1016/j.applthermaleng.2015.10.119
18.
Huang
,
X.
,
Yang
,
W.
,
Ming
,
T.
,
Shen
,
W.
, and
Yu
,
X.
,
2017
, “
Heat Transfer Enhancement on a Microchannel Heat Sink With Impinging Jets and Dimples
,”
Int. J. Heat Mass Transfer
,
112
, pp.
113
124
. 10.1016/j.ijheatmasstransfer.2017.04.078
19.
Yong
,
J. Q.
, and
Teo
,
C. J.
,
2014
, “
Mixing and Heat Transfer Enhancement in Microchannels Containing Converging-Diverging Passages
,”
ASME J. Heat Transfer
,
136
(
4
), p.
041704
. 10.1115/1.4026090
20.
Lin
,
L.
,
Zhao
,
J.
,
Lu
,
G.
,
Wang
,
X. D.
, and
Yan
,
W. M.
,
2017
, “
Heat Transfer Enhancement in Microchannel Heat Sink by Wavy Channel With Changing Wavelength/Amplitude
,”
Int. J. Therm. Sci.
,
118
, pp.
423
434
. 10.1016/j.ijthermalsci.2017.05.013
21.
Lin
,
L.
,
Chen
,
Y. Y.
,
Zhang
,
X. X.
, and
Wang
,
X. D.
,
2014
, “
Optimization of Geometry and Flow Rate Distribution for Double-Layer Microchannel Heat Sink
,”
Int. J. Therm. Sci.
,
78
, pp.
158
168
. 10.1016/j.ijthermalsci.2013.12.009
22.
Leng
,
C.
,
Wang
,
X. D.
,
Wang
,
T. H.
, and
Yan
,
W. M.
,
2015
, “
Multi-Parameter Optimization of Flow and Heat Transfer for a Novel Double-Layered Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
84
, pp.
359
369
. 10.1016/j.ijheatmasstransfer.2015.01.040
23.
Xu
,
J. L.
,
Gan
,
Y. H.
,
Zhang
,
D. C.
, and
Li
,
X. H.
,
2005
, “
Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1662
1674
. 10.1016/j.ijheatmasstransfer.2004.12.008
24.
Abdollahi
,
A.
,
Sharma
,
R. N.
,
Mohammed
,
H. A.
, and
Vatani
,
A.
,
2018
, “
Heat Transfer and Flow Analysis of Al2O3-Water Nanofluids in Interrupted Microchannel Heat Sink With Ellipse and Diamond Ribs in the Transverse Microchambers
,”
Heat Transfer Eng.
,
39
(
16
), pp.
1461
1469
. 10.1080/01457632.2017.1379344
25.
Kim
,
C. B.
,
Leng
,
C.
,
Wang
,
X. D.
,
Wang
,
T. H.
, and
Yan
,
W. M.
,
2015
, “
Effects of Slot-Jet Length on the Cooling Performance of Hybrid Microchannel/Slot-Jet Module
,”
Int. J. Heat Mass Transfer
,
89
, pp.
838
845
. 10.1016/j.ijheatmasstransfer.2015.05.108
26.
Zhang
,
Y.
,
Wang
,
S.
,
Chen
,
K.
, and
Ding
,
P.
,
2018
, “
Effect of Slot-Jet Position on the Cooling Performance of the Hybrid Trapezoid Channel and Impingement Module
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1205
1217
. 10.1016/j.ijheatmasstransfer.2017.11.054
27.
Samal
,
S. K.
, and
Moharana
,
M. K.
,
2019
, “
Thermo-Hydraulic Performance Evaluation of a Novel Design Recharging Microchannel
,”
Int. J. Therm. Sci.
,
135
, pp.
459
470
. 10.1016/j.ijthermalsci.2018.09.006
28.
Samal
,
S. K.
, and
Moharana
,
M. K.
,
2020
, “
Thermohydrodynamic Performance Evaluation of Recharging, Interrupted and Simple Microchannels: A Comparative Study
,”
ASME J. Heat Transfer
,
142
(
1
), p.
012503
. 10.1115/1.4045066
29.
Samal
,
S. K.
, and
Moharana
,
M. K.
,
2020
, “
Thermo-Hydraulic and Entropy Generation Analysis of Recharging Microchannel Using Water-Based Graphene–Silver Hybrid Nanofluid
,”
J. Therm. Anal. Calorim.
10.1007/s10973-020-09382-8
30.
Chein
,
R.
, and
Chen
,
J.
,
2009
, “
Numerical Study of the Inlet/Outlet Arrangement Effect on Microchannel Heat Sink Performance
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1627
1638
. 10.1016/j.ijthermalsci.2008.12.019
31.
Wang
,
C. C.
,
Yang
,
K. S.
,
Tsai
,
J. S.
, and
Chen
,
Y.
,
2011
, “
Characteristics of Flow Distribution in Compact Parallel Flow Heat Exchangers, Part II: Modified Inlet Header
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3235
3242
. 10.1016/j.applthermaleng.2011.06.003
32.
Solovitz
,
S. A.
, and
Mainka
,
J.
,
2011
, “
Manifold Design for Micro-Channel Cooling With Uniform Flow Distribution
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051103
. 10.1115/1.4004089
33.
Huang
,
C. H.
, and
Wang
,
C. H.
,
2013
, “
The Design of Uniform Tube Flow Rates for Z-Type Compact Parallel Flow Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
608
622
. 10.1016/j.ijheatmasstransfer.2012.10.058
34.
Mohammadi
,
M.
,
Jovanovic
,
G. N.
, and
Sharp
,
K. V.
,
2013
, “
Numerical Study of Flow Uniformity and Pressure Characteristics Within a Microchannel Array With Triangular Manifolds
,”
Comput. Chem. Eng.
,
52
, pp.
134
144
. 10.1016/j.compchemeng.2012.12.010
35.
Kumaran
,
R. M.
,
Kumaraguruparan
,
G.
, and
Sornakumar
,
T.
,
2013
, “
Experimental and Numerical Studies of Header Design and Inlet/Outlet Configurations on Flow Mal-Distribution in Parallel Micro-Channels
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
205
216
. 10.1016/j.applthermaleng.2013.04.026
36.
Siva
,
V. M.
,
Pattamatta
,
A.
, and
Das
,
S. K.
,
2014
, “
Investigation on Flow Maldistribution in Parallel Microchannel Systems for Integrated Microelectronic Device Cooling
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
3
), pp.
438
450
. 10.1109/TCPMT.2013.2284291
37.
Huang
,
C. H.
,
Wang
,
C. H.
, and
Kim
,
S.
,
2016
, “
A Manifold Design Problem for a Plate-Fin Microdevice to Maximize the Flow Uniformity of System
,”
Int. J. Heat Mass Transfer
,
95
, pp.
22
34
. 10.1016/j.ijheatmasstransfer.2015.11.072
38.
Siddiqui
,
O. K.
, and
Zubair
,
S. M.
,
2017
, “
Efficient Energy Utilization Through Proper Design of Microchannel Heat Exchanger Manifolds: A Comprehensive Review
,”
Renew. Sust. Energ. Rev.
,
74
, pp.
969
1002
. 10.1016/j.rser.2017.01.074
39.
Ghani
,
I. A.
,
Sidik
,
N. A. C.
,
Kamaruzzaman
,
N.
,
Yahya
,
W. J.
, and
Mahian
,
O.
,
2017
, “
The Effect of Manifold Zone Parameters on Hydrothermal Performance of Micro-Channel Heat Sink: A Review
,”
Int. J. Heat Mass Transfer
,
109
, pp.
1143
1161
. 10.1016/j.ijheatmasstransfer.2017.03.007
40.
Xia
,
G. D.
,
Jiang
,
J.
,
Wang
,
J.
,
Zhai
,
Y. L.
, and
Ma
,
D. D.
,
2015
, “
Effects of Different Geometric Structures on Fluid Flow and Heat Transfer Performance in Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
80
, pp.
439
447
. 10.1016/j.ijheatmasstransfer.2014.08.095
41.
Anbumeenakshi
,
C.
, and
Thansekhar
,
M. R.
,
2016
, “
Experimental Investigation of Header Shape and Inlet Configuration on Flow Maldistribution in Microchannel
,”
Exp. Therm. Fluid Sci.
,
75
, pp.
156
161
. 10.1016/j.expthermflusci.2016.02.004
42.
Cetkin
,
E.
,
2017
, “
Constructal Microdevice Manifold Design With Uniform Flow Rate Distribution by Consideration of the Tree-Branching Rule of Leonardo Da Vinci and Hess–Murray Rule
,”
ASME J. Heat Transfer
,
139
(
8
), p.
082401
. 10.1115/1.4036089
43.
Tang
,
S.
,
Zhao
,
Y.
,
Diao
,
Y.
, and
Quan
,
Z.
,
2018
, “
Effects of Various Inlet/Outlet Positions and Header Forms on Flow Distribution and Thermal Performance in Microchannel Heat Sink
,”
Microsyst. Technol.
,
24
(
5
), pp.
2485
2497
. 10.1007/s00542-017-3688-y
44.
Yadav
,
V.
,
Kumar
,
R.
, and
Narain
,
A.
,
2018
, “
Mitigation of Flow Maldistribution in Parallel Microchannel Heat Sink
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
9
(
2
), pp.
247
261
. 10.1109/TCPMT.2018.2851543
45.
Kumar
,
S.
, and
Singh
,
P. K.
,
2019
, “
Effects of Flow Inlet Angle on Flow Maldistribution and Thermal Performance of Water Cooled Mini-Channel Heat Sink
,”
Int. J. Therm. Sci.
,
138
, pp.
504
511
. 10.1016/j.ijthermalsci.2019.01.014
46.
Wang
,
Y.
,
Zhu
,
K.
,
Cui
,
Z.
, and
Wei
,
J.
,
2019
, “
Effects of the Location of the Inlet and Outlet on Heat Transfer Performance in Pin Fin CPU Heat Sink
,”
Appl. Therm. Eng.
,
151
, pp.
506
513
. 10.1016/j.applthermaleng.2019.02.030
47.
Kumar
,
R.
,
Singh
,
G.
, and
Mikielewicz
,
D.
,
2018
, “
A New Approach for the Mitigating of Flow Maldistribution in Parallel Microchannel Heat Sink
,”
ASME J. Heat Transfer
,
140
(
7
), p.
072401
. 10.1115/1.4038830
48.
Kumar
,
R.
,
Singh
,
G.
, and
Mikielewicz
,
D.
,
2019
, “
Numerical Study on Mitigation of Flow Maldistribution in Parallel Microchannel Heat Sink: Channels Variable Width Versus Variable Height Approach
,”
ASME J. Electron. Packag.
,
141
(
2
), p.
021009
. 10.1115/1.4043158
49.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2007
, “
Effect of Bifurcation Angle in Tree-Shaped Microchannel Networks
,”
J. Appl. Phys.
,
102
(
7
), p.
073530
. 10.1063/1.2794379
50.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley and Sons
,
New York
.
51.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1073
1083
. 10.1016/j.ijthermalsci.2006.01.016
52.
Shah
,
R. K.
, and
London
,
A. K.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
53.
Bahiraei
,
M.
, and
Heshmatian
,
S.
,
2017
, “
Efficacy of a Novel Liquid Block Working With a Nanofluid Containing Graphene Nanoplatelets Decorated With Silver Nanoparticles Compared With Conventional CPU Coolers
,”
Appl. Therm. Eng.
,
127
, pp.
1233
1245
. 10.1016/j.applthermaleng.2017.08.136
You do not currently have access to this content.