Abstract

Fourier law of heat conduction, its analog Fick's first law, and Newton's law of viscosity are classical laws that are not capable of exhibiting memory effects. Conservation laws based on these classical laws do not give predictions about memory effects on the transport phenomena. Recently, proposed novel laws are called Cattaneo–Christov heat flux. Models are based on the generalization of classical laws of heat conduction, mass diffusion, and Newton's law of viscosity. This investigation considers this generalized theory to model the impact of relaxation phenomenon on the transport of momentum, heat, and mass in Maxwell fluid (viscoelastic fluid) of temperature-dependent viscosity and thermal conductivity in the presence of temperature-dependent mass diffusion coefficients. It is observed from the simulations that memory effects play a key role in controlling momentum, thermal and concentration boundary layer thicknesses. It is also noted that the rate of diffusion of heat and mass has shown an increasing trend when thermal conductivity and mass diffusion coefficients are increased via rise in temperature of the fluid. The generative chemical reaction on the transport of specie relative to the impact on the transport of specie when it is compared with the impact of destructive chemical reaction on the transport of specie.

References

References
1.
Hayat
,
T.
,
Nasir
,
T.
,
Khan
,
M. I.
, and
Alsaedi
,
A.
,
2018
, “
Numerical Investigation of MHD Flow With Soret and Dufour Effect
,”
Results Phys.
,
8
(
1
), pp.
1017
1022
. 10.1016/j.rinp.2018.01.006
2.
Hayat
,
T.
,
Ullah
,
I.
,
Alsaedi
,
A.
, and
Ahmad
,
B.
,
2019
, “
Variable Aspects of Double Stratified MHD Flow of Second Grade Nanoliquid With Heat Generation/Absorption: A Revised Model
,”
Radiat. Phys. Chem.
,
157
(
4
), pp.
109
115
. 10.1016/j.radphyschem.2018.12.021
3.
Hassanpour
,
A.
,
Ranjbar
,
A. A.
, and
Sheikholeslami
,
M.
,
2018
, “
Numerical Study for Forced MHD Convection Heat Transfer of a Nanofluid in a Square Cavity With a Cylinder of Constant Heat Flux
,”
Eur. Phys. J. Plus
,
133
(
2
), p.
66
. 10.1140/epjp/i2018-11893-3
4.
Dogonchi
,
A. S.
,
Divsalar
,
K.
, and
Ganji
,
D. D.
,
2016
, “
Flow and Heat Transfer of MHD Nanofluid Between Parallel Plates in the Presence of Thermal Radiation
,”
Comput. Methods Appl. Mech. Eng.
,
310
(
13
), pp.
58
76
. 10.1016/j.cma.2016.07.003
5.
Raju
,
C. S. K.
,
Sandeep
,
N.
,
Sugunamma
,
V.
,
Babu
,
M. J.
, and
Reddy
,
J. R.
,
2016
, “
Heat and Mass Transfer in Magnetohydrodynamic Casson Fluid Over an Exponentially Permeable Stretching Surface
,”
Eng. Sci. Technol. Int. J.
,
19
(
1
), pp.
45
52
. 10.1016/j.jestch.2015.05.010
6.
Hsiao
,
K. L.
,
2017
, “
Combined Electrical MHD Heat Transfer Thermal Extrusion System Using Maxwell Fluid With Radiative and Viscous Dissipation Effects
,”
Appl. Therm. Eng.
,
112
(
3
), pp.
1281
1288
. 10.1016/j.applthermaleng.2016.08.208
7.
Shehzad
,
S. A.
,
Waqas
,
M.
,
Alsaedi
,
A.
, and
Hayat
,
T.
,
2016
, “
Flow and Heat Transfer Over an Unsteady Stretching Sheet in a Micropolar Fluid With Convective Boundary Condition
,”
J. Appl. Fluid Mech.
,
9
(
3
), pp.
1437
1445
. 10.18869/acadpub.jafm.68.228.24172
8.
Cattaneo
,
C.
,
1948
, “
Sulla Conduzione del Calore
,”
Atti Sem. Mat. Fis. Univ. Modena
,
3
(
1
), pp.
83
101
.
9.
Christov
,
C. I.
,
2009
, “
On Frame Indifferent Formulation of the Maxwell–Cattaneo Model of Finite-Speed Heat Conduction
,”
Mech. Res. Commun.
,
36
(
4
), pp.
481
486
. 10.1016/j.mechrescom.2008.11.003
10.
Shah
,
Z.
,
Dawar
,
A.
,
Khan
,
I.
,
Islam
,
S.
,
Ching
,
D. L. C.
, and
Khan
,
A. Z.
,
2019
, “
Cattaneo-Christov Model for Electrical Magnetite Micropoler Casson Ferrofluid Over a Stretching/Shrinking Sheet Using Effective Thermal Conductivity Model
,”
Case Stud. Therm. Eng.
,
13
(
1
), p.
100352
. 10.1016/j.csite.2018.11.003
11.
Hayat
,
T.
,
Farooq
,
M.
,
Alsaedi
,
A.
, and
Al-Solamy
,
F.
,
2015
, “
Impact of Cattaneo-Christov Heat Flux in the Flow Over a Stretching Sheet With Variable Thickness
,”
Aip Adv.
,
5
(
8
), p.
087159
. 10.1063/1.4929523
12.
Saleem
,
S.
,
Awais
,
M.
,
Nadeem
,
S.
,
Sandeep
,
N.
, and
Mustafa
,
M. T.
,
2017
, “
Theoretical Analysis of Upper-Convected Maxwell Fluid Flow With Cattaneo–Christov Heat Flux Model
,”
Chin. J. Phys.
,
55
(
4
), pp.
1615
1625
. 10.1016/j.cjph.2017.04.005
13.
Upadhya
,
S. M.
,
Raju
,
C. S. K.
,
Saleem
,
S.
, and
Alderremy
,
A. A.
,
2018
, “
Modified Fourier Heat Flux on MHD Flow Over Stretched Cylinder Filled with Dust, Graphene and Silver Nanoparticles
,”
Results Phys.
,
9
(
2
), pp.
1377
1385
. 10.1016/j.rinp.2018.04.038
14.
Babu
,
M. J.
,
Sandeep
,
N.
, and
Saleem
,
S.
,
2017
, “
Free Convective MHD Cattaneo-Christov Flow Over Three Different Geometries With Thermophoresis and Brownian Motion
,”
Alexandria Eng. J.
,
56
(
4
), pp.
659
669
. 10.1016/j.aej.2017.01.005
15.
Dogonchi
,
A. S.
, and
Ganji
,
D. D.
,
2017
, “
Impact of Cattaneo–Christov Heat Flux on MHD Nanofluid Flow and Heat Transfer Between Parallel Plates Considering Thermal Radiation Effect
,”
J. Taiwan Inst. Chem. Eng.
,
80
(
11
), pp.
52
63
. 10.1016/j.jtice.2017.08.005
16.
Alamri
,
S. Z.
,
Khan
,
A. A.
,
Azeez
,
M.
, and
Ellahi
,
R.
,
2019
, “
Effects of Mass Transfer on MHD Second Grade Fluid Towards Stretching Cylinder: A Novel Perspective of Cattaneo–Christov Heat Flux Model
,”
Phys. Lett. A
,
383
(
2–3
), pp.
276
281
. 10.1016/j.physleta.2018.10.035
17.
Han
,
S.
,
Zheng
,
L.
,
Li
,
C.
, and
Zhang
,
X.
,
2014
, “
Coupled Flow and Heat Transfer in Viscoelastic Fluid With Cattaneo–Christov Heat Flux Model
,”
Appl. Math. Lett.
,
38
(
12
), pp.
87
93
. 10.1016/j.aml.2014.07.013
18.
Hayat
,
T.
,
Waqas
,
M.
,
Shehzad
,
S. A.
, and
Alsaedi
,
A.
,
2016
, “
Mixed Convection Flow of Viscoelastic Nanofluid by a Cylinder With Variable Thermal Conductivity and Heat Source/Sink
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
1
), pp.
214
234
. 10.1108/HFF-02-2015-0053
19.
Dogonchi
,
A. S.
, and
Ganji
,
D. D.
,
2016
, “
Convection–Radiation Heat Transfer Study of Moving Fin With Temperature-Dependent Thermal Conductivity, Heat Transfer Coefficient and Heat Generation
,”
Appl. Therm. Eng.
,
103
(
12
), pp.
705
712
. 10.1016/j.applthermaleng.2016.04.121
20.
Shibin
,
S. U.
, and
Xiaokui
,
Z. H. A. O.
,
2018
, “
Global Wellposedness of Magnetohydrodynamics System With Temperature-Dependent Viscosity
,”
Acta Math. Sci.
,
38
(
3
), pp.
898
914
. 10.1016/S0252-9602(18)30791-4
21.
Hasona
,
W. M.
,
El-Shekhipy
,
A. A.
, and
Ibrahim
,
M. G.
,
2018
, “
Combined Effects of Magnetohydrodynamic and Temperature Dependent Viscosity on Peristaltic Flow of Jeffrey Nanofluid Through a Porous Medium: Applications to Oil Refinement
,”
Int. J. Heat Mass Transfer
,
126
(
11
), pp.
700
714
. 10.1016/j.ijheatmasstransfer.2018.05.087
22.
Qureshi
,
I. H.
,
Nawaz
,
M.
,
Rana
,
S.
, and
Zubair
,
T.
,
2018
, “
Galerkin Finite Element Study on the Effects of Variable Thermal Conductivity and Variable Mass Diffusion Conductance on Heat and Mass Transfer
,”
Commun. Theor. Phys.
,
70
(
1
), pp.
49
59
. 10.1088/0253-6102/70/1/49
23.
Nawaz
,
M.
,
Arif
,
U.
, and
Qureshi
,
I. H.
,
2019
, “
Impact of Temperature Dependent Diffusion Coefficients on Heat and Mass Transport in Viscoelastic Liquid Using Generalized Fourier Theory
,”
Phys. Scr.
,
94
(
11
), p.
115206
. 10.1088/1402-4896/ab1cec
24.
Nawaz
,
M.
, and
Rana
,
S.
,
2019
, “
Influence of Thermal Properties on Temperature of Fluid With Micro-Structures
,”
Phys. A Stat. Mech. Appl.
,
531
(
19
), p.
121494
. 10.1016/j.physa.2019.121494
25.
Qureshi
,
I. H.
,
Nawaz
,
M.
, and
Shahzad
,
A.
,
2019
, “
Numerical Study of Dispersion of Nanoparticles in Magnetohydrodynamic Liquid With Hall and Ion Slip Currents
,”
AIP Adv.
,
9
(
2
), p.
025219
. 10.1063/1.5084311
You do not currently have access to this content.