Abstract

The mitigation of boiling instabilities by using water-alcohol mixtures as coolants in a two-phase pumpless loop is experimentally investigated. Water-miscible alcohol, namely, 2-propanol, is added to water in quantities of 0.05, 0.1, and 0.2 mol fractions to reduce the bubble departure diameters. Boiling experiments are carried out in the pumpless loop involving a copper-based split-flow microchannel evaporator. Two-phase flow stability and heat transfer performance are compared between pure water and 2-propanol-water mixtures. Temperature measurements at the evaporator inlet, evaporator outlet, and condenser inlet show a considerable reduction in fluctuations when the binary mixtures are used as coolants. Therefore, the addition of a small amount of alcohol to water is proposed as a simple technique to control two-phase flow instabilities as against complex geometry modification to the evaporator, often studied in the literature. The pumpless loop with water-alcohol mixtures is a viable thermal management solution for power electronic devices that involve time-varying workloads.

References

References
1.
Wang
,
P.
,
McCluskey
,
P.
, and
Bar-Cohen
,
A.
,
2013
, “
Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021001
. 10.1115/1.4023215
2.
Qian
,
C.
,
Gheitaghy
,
A. M.
,
Fan
,
J.
,
Tang
,
H.
,
Sun
,
B.
,
Ye
,
H.
, and
Zhang
,
G.
,
2018
, “
Thermal Management on IGBT Power Electronic Devices and Modules
,”
IEEE Access
,
6
, pp.
12868
12884
. 10.1109/ACCESS.2018.2793300
3.
Okumura
,
H.
,
2015
, “
A Roadmap for Future Wide Bandgap Semiconductor Power Electronics
,”
MRS Bull.
,
40
(
5
), pp.
439
444
. 10.1557/mrs.2015.97
4.
Hou
,
F.
,
Wang
,
W.
,
Zhang
,
H.
,
Chen
,
C.
,
Chen
,
C.
,
Lin
,
T.
,
Cao
,
L.
,
Zhang
,
G. Q.
, and
Ferreira
,
J. A.
,
2019
, “
Experimental Evaluation of a Compact Two-Phase Cooling System for High Heat Flux Electronic Packages
,”
Appl. Therm. Eng.
,
163
, p.
114338
. 10.1016/j.applthermaleng.2019.114338
5.
Rama Raju
,
V. S. V.
, and
Krishnan
,
S.
,
2020
, “
Experimental Investigation of Two-Phase Pumpless Loop With Aqueous Anionic Surfactant as Working Fluid
,”
Int. J. Therm. Sci.
,
154
, p.
106400
. 10.1016/j.ijthermalsci.2020.106400
6.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
. 10.1109/6144.926375
7.
Aranzabal
,
I.
,
Delmonte
,
N.
,
Cova
,
P.
, and
De Alegria
,
I. M.
,
2017
, “
Two-Phase Liquid Cooling for Electric Vehicle IGBT Power Module Thermal Management
,”
11th IEEE Int. Conf. Compat. Power Electron. Power Eng.
,
Cadiz, Spain
, pp.
495
500
.
8.
Hou
,
F.
,
Zhang
,
H.
,
Huang
,
D.
,
Fan
,
J.
,
Liu
,
F.
,
Lin
,
T.
,
Cao
,
L.
,
Fan
,
X.
,
Ferreira
,
J. A.
, and
Zhang
,
G.
,
2020
, “
Microchannel Thermal Management System with Two-Phase Flow for Power Electronics Over 500 W/Cm2 Heat Dissipation
,”
IEEE Trans. Power Electron.
,
35
(
10
), pp.
10592
10600
. 10.1109/tpel.2020.2985117
9.
Liang
,
G.
, and
Mudawar
,
I.
,
2020
, “
Review of Channel Flow Boiling Enhancement by Surface Modification, and Instability Suppression Schemes
,”
Int. J. Heat Mass Transfer
,
146
, p.
118864
. 10.1016/j.ijheatmasstransfer.2019.118864
10.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
396
. 10.1115/1.2165208
11.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072402
. 10.1115/1.2908431
12.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061401
. 10.1115/1.4023574
13.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Flow Patterns and Heat Transfer Mechanisms During Flow Boiling Over Open Microchannels in Tapered Manifold (OMM)
,”
Int. J. Heat Mass Transfer
,
89
, pp.
494
504
. 10.1016/j.ijheatmasstransfer.2015.05.070
14.
Lee
,
H. J.
,
Liu
,
D. Y.
, and
Yao
,
S. C.
,
2010
, “
Flow Instability of Evaporative Micro-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1740
1749
. 10.1016/j.ijheatmasstransfer.2010.01.016
15.
Lu
,
C. T.
, and
Pan
,
C.
,
2008
, “
Stabilization of Flow Boiling in Microchannel Heat Sinks with a Diverging Cross-Section Design
,”
J. Micromech. Microeng.
,
18
(
7
), p.
075035
. 10.1088/0960-1317/18/7/075035
16.
Balasubramanian
,
K.
,
Lee
,
P. S.
,
Jin
,
L. W.
,
Chou
,
S. K.
,
Teo
,
C. J.
, and
Gao
,
S.
,
2011
, “
Experimental Investigations of Flow Boiling Heat Transfer and Pressure Drop in Straight and Expanding Microchannels—A Comparative Study
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2413
2421
. 10.1016/j.ijthermalsci.2011.07.007
17.
Balasubramanian
,
K.
,
Lee
,
P. S.
,
Jin
,
L. W.
,
Chou
,
S. K.
,
Teo
,
C. J.
, and
Gao
,
S.
,
2011
, “
Enhanced Heat Transfer and Reduced Pressure Drop Using Stepped Fin Microchannels
,”
IEEE 13th Electron. Packag. Technol. Conf. EPTC
,
Singapore
, pp.
653
659
.
18.
Zhu
,
Y.
,
Antao
,
D. S.
,
Chu
,
K.-H.
,
Chen
,
S.
,
Hendricks
,
T. J.
,
Zhang
,
T.
, and
Wang
,
E. N.
,
2016
, “
Surface Structure Enhanced Microchannel Flow Boiling
,”
ASME J. Heat Transfer
,
138
(
9
), p.
091501
. 10.1115/1.4033497
19.
Recinella
,
A.
, and
Kandlikar
,
S. G.
,
2017
, “
Enhanced Flow Boiling Using Radial Open Microchannels With Manifold and Offset Strip Fins
,”
ASME J. Heat Transfer
,
140
(
2
), p.
021502
. 10.1115/1.4037644
20.
Mathew
,
J.
,
Lee
,
P. S.
,
Wu
,
T.
, and
Yap
,
C. R.
,
2019
, “
Experimental Study of Flow Boiling in a Hybrid Microchannel-Microgap Heat Sink
,”
Int. J. Heat Mass Transfer
,
135
, pp.
1167
1191
. 10.1016/j.ijheatmasstransfer.2019.02.033
21.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2045
2059
. 10.1016/j.ijheatmasstransfer.2003.12.006
22.
Deng
,
D.
,
Wan
,
W.
,
Tang
,
Y.
,
Wan
,
Z.
, and
Liang
,
D.
,
2015
, “
Experimental Investigations on Flow Boiling Performance of Reentrant and Rectangular Microchannels—A Comparative Study
,”
Int. J. Heat Mass Transfer
,
82
, pp.
435
446
. 10.1016/j.ijheatmasstransfer.2014.11.074
23.
Nishiguchi
,
S.
, and
Shoji
,
M.
,
2011
, “
Boiling Heat Transfer of Butanol Aqueous Solution-Augmentation of Critical Heat Flux
,”
J. ASTM Int.
,
8
(
6
), pp.
198
208
. 10.1520/JAI103452
24.
Vasileiadou
,
P.
,
Sefiane
,
K.
,
Karayiannis
,
T. G.
, and
Christy
,
J. R. E.
,
2017
, “
Flow Boiling of Ethanol/Water Binary Mixture in a Square Mini-Channel
,”
Appl. Therm. Eng.
,
127
, pp.
1617
1626
. 10.1016/j.applthermaleng.2017.08.126
25.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
,
2000
, “
Pool Boiling Heat Transfer in Aqueous Solutions of an Anionic Surfactant
,”
ASME J. Heat Transfer
,
122
(
4
), pp.
708
715
. 10.1115/1.1316785
26.
Armijo
,
K. M.
, and
Carey
,
V. P.
,
2013
, “
An Analytical and Experimental Study of Heat Pipe Performance With a Working Fluid Exhibiting Strong Concentration Marangoni Effects
,”
Int. J. Heat Mass Transfer
,
64
, pp.
70
78
. 10.1016/j.ijheatmasstransfer.2013.03.020
27.
Sun
,
C. L.
, and
Van Carey
,
P.
,
2004
, “
Marangoni Effects on the Boiling of 2-Propanol/Water Mixtures in a Confined Space
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5417
5426
. 10.1016/j.ijheatmasstransfer.2004.07.014
28.
Mukherjee
,
S.
, and
Mudawar
,
I.
,
2003
, “
Pumpless Loop for Narrow Channel and Micro-Channel Boiling
,”
ASME J. Electron. Packag.
,
125
(
3
), pp.
431
441
. 10.1115/1.1602708
29.
McGillis
,
W. R.
,
1993
,
Boiling From Localized Heat Sources in Pure and Binary Fluid Systems, Ph.D Thesis
,
University of California
,
Berkeley, CA
.
30.
Inoue
,
T.
,
Kawae
,
N.
, and
Monde
,
M.
,
1998
, “
Characteristics of Heat Transfer Coefficient During Nucleate Pool Boiling of Binary Mixtures: Improvement of Correlation and Its Physical Meaning
,”
Heat Mass Transfer und Stoffuebertragung
,
33
(
4
), pp.
337
344
. 10.1007/s002310050199
31.
Hamzekhani
,
S.
,
Maniavi Falahieh
,
M.
, and
Akbari
,
A.
,
2014
, “
Bubble Departure Diameter in Nucleate Pool Boiling at Saturation: Pure Liquids and Binary Mixtures
,”
Int. J. Refrig.
,
46
(
256
), pp.
50
58
. 10.1016/j.ijrefrig.2014.07.003
32.
Fazel
,
S. A. A.
, and
Shafaee
,
S. B.
,
2015
, “
Bubble Dynamics for Nucleate Pool Boiling of Electrolyte
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081502
. 10.1115/1.4001315
33.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O’Connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
34.
Fazel
,
S. A. A.
, and
Jamialahmadi
,
M.
,
2013
, “
Semi-Empirical Modeling of Pool Boiling Heat Transfer in Binary Mixtures
,”
Int. J. Heat Fluid Flow
,
44
, pp.
468
477
. 10.1016/j.ijheatfluidflow.2013.08.002
35.
Kuo
,
C. J.
, and
Peles
,
Y.
,
2009
, “
Pressure Effects on Flow Boiling Instabilities in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
271
280
. 10.1016/j.ijheatmasstransfer.2008.06.015
36.
Zhang
,
T. J.
,
Wen
,
J. T.
,
Peles
,
Y.
,
Catano
,
J.
,
Zhou
,
R.
, and
Jensen
,
M. K.
,
2011
, “
Two-Phase Refrigerant Flow Instability Analysis and Active Control in Transient Electronics Cooling Systems
,”
Int. J. Multiphase Flow
,
37
(
1
), pp.
84
97
. 10.1016/j.ijmultiphaseflow.2010.07.003
37.
Guet
,
S. C.
,
2004
,
Bubble Size Effect on the Gas-Lift Technique, Ph.D Thesis
,
Technical University
,
Delft, The Netherlands
.
You do not currently have access to this content.