Abstract

Over the past two decades, due to the rising energy prices and growing awareness about climate change, significant efforts have been devoted to reducing the energy consumption of various home appliances. However, the energy efficiency of clothes dryers has little improvement. Recent innovations in the direct-contact ultrasonic fabric drying technique offer new opportunities for energy saving. In this technique, high-frequency mechanical vibrations generated by the ultrasonic transducer are utilized to atomize water from a fabric in the liquid form, which demonstrates great potential for reducing energy use and drying time of the fabric drying process. Here, for the first time, fabric drying kinetics under different direct-contact ultrasonic drying conditions were investigated experimentally and analytically. The drying processes of four kinds of fabrics were experimentally tested under different ultrasonic transducer vibration frequency (115, 135, and 155 kHz) and input power (1.2, 2.5, and 4.4 W) conditions. According to the experimental data, five different kinds of models were applied to quantify the drying kinetics of fabrics during direct-contact ultrasonic drying. The models not only incorporated the transducer parameters but also the parameters related to the nature of fabric. Our evaluation results of model prediction performance demonstrated that the two empirical models, i.e., the Weibull model and the Gaussian model, were superior to the three semi-theoretical models for anticipating the drying kinetics of fabrics under direct-contact ultrasonic drying. Furthermore, the Weibull model is more suitable for practical energy-efficient direct-contact ultrasonic fabric drying applications compared with the Gaussian model.

References

References
1.
Denkenberger
,
D.
,
Mau
,
S.
,
Calwell
,
C.
,
Wanless
,
E.
, and
Trimboli
,
B.
,
2012
, “
What Lurks Beneath: Energy Savings Opportunities From Better Testing and Technologies in Residential Clothes Dryers
,”
Proceedings of the American Council for an Energy-Efficient Economy: Summer Study, 2012
,
Washington, DC
, pp.
75
78
. https://www.aceee.org/files/proceedings/2012/data/papers/0193-000293.pdf
2.
Granda
,
C.
,
Bush
,
E.
, and
Wold
,
C.
,
2013
, “
Market Transformation for Clothes Dryers: Lessons Learned from the European Experience
,” ECEEE Summer Study Proceedings, pp.
523
527
.
3.
Denkenberger
,
D.
,
Calwell
,
C.
,
Beck
,
N.
,
Trimboli
,
B.
,
Driscoll
,
D.
, and
Wold
,
C.
,
2013
,
Analysis of Potential Energy Savings From Heat Pump Clothes Dryers in North America
,
CLASP
,
Washington, DC
.
4.
Dymond
,
C.
,
Baker
,
S.
, and
Northwest Energy Efficiency Alliance
,
2018
, “
Heat Pump Clothes Dryers in the Pacific Northwest
.”
5.
Wei
,
Y.
,
Hua
,
J.
, and
Ding
,
X.
,
2017
, “
A Mathematical Model for Simulating Heat and Moisture Transfer Within Porous Cotton Fabric Drying Inside the Domestic Air-Vented Drum Dryer
,”
J. Text. Inst.
,
108
(
6
), pp.
1074
1084
. 10.1080/00405000.2016.1219450
6.
Horowitz
,
N.
,
2014
, “
NRDC ISSUe Brief
.”
7.
Colak
,
N.
, and
Hepbasli
,
A.
,
2009
, “
A Review of Heat Pump Drying: Part 1—Systems, Models and Studies
,”
Energy Convers. Manag.
,
50
(
9
), pp.
2180
2186
. 10.1016/j.enconman.2009.04.031
8.
Colak
,
N.
, and
Hepbasli
,
A.
,
2009
, “
A Review of Heat-Pump Drying (HPD): Part 2—Applications and Performance Assessments
,”
Energy Convers. Manag.
,
50
(
9
), pp.
2187
2199
. 10.1016/j.enconman.2009.04.037
9.
Patel
,
V. K.
,
Gluesenkamp
,
K. R.
,
Goodman
,
D.
, and
Gehl
,
A.
,
2018
, “
Experimental Evaluation and Thermodynamic System Modeling of Thermoelectric Heat Pump Clothes Dryer
,”
Appl. Energy
,
217
, pp.
221
232
. 10.1016/j.apenergy.2018.02.055
10.
Hamid
,
M.
,
1991
, “
Microwave Drying of Clothes
,”
J. Microw. Power Electromagn. Energy
,
26
(
2
), pp.
107
113
. 10.1080/08327823.1991.11688146
11.
Fu
,
W.
,
Deng
,
J.
, and
Li
,
X.
,
2019
, “
Microwave Drying of Fabrics
,”
J. Microw. Power Electromagn. Energy
,
53
(
1
), pp.
12
23
. 10.1080/08327823.2019.1569897
12.
Weaver
,
S.
,
2017
,
Energy Efficient Clothes Dryer With IR Heating and Electrostatic Precipitator
,
GE Global Research
,
Niskayuna, NY
.
13.
Şevik
,
S.
,
Aktaş
,
M.
,
Dolgun
,
E. C.
,
Arslan
,
E.
, and
Tuncer
,
A. D.
,
2019
, “
Performance Analysis of Solar and Solar-Infrared Dryer of Mint and Apple Slices Using Energy-Exergy Methodology
,”
Sol. Energy
,
180
, pp.
537
549
. 10.1016/j.solener.2019.01.049
14.
Jin
,
G.
,
Zhang
,
M.
,
Fang
,
Z.
,
Cui
,
Z.
, and
Song
,
C.
,
2015
, “
Numerical Investigation on Effect of Food Particle Mass on Spout Elevation of a Gas–Particle Spout Fluidized Bed in a Microwave–Vacuum Dryer
,”
Dry. Technol.
,
33
(
5
), pp.
591
604
. 10.1080/07373937.2014.965317
15.
Liu
,
M.
,
Wu
,
D.
,
Xiao
,
F.
, and
Yan
,
J.
,
2015
, “
A Novel Lignite-Fired Power Plant Integrated With a Vacuum Dryer: System Design and Thermodynamic Analysis
,”
Energy
,
82
, pp.
968
975
. 10.1016/j.energy.2015.01.106
16.
Liu
,
D.
,
Zhao
,
F.-Y.
,
Yang
,
H.
, and
Tang
,
G.-F.
,
2015
, “
Theoretical and Experimental Investigations of Thermoelectric Heating System with Multiple Ventilation Channels
,”
Appl. Energy
,
159
, pp.
458
468
. 10.1016/j.apenergy.2015.08.125
17.
Goodman
,
D.
,
Patel
,
V. K.
, and
Gluesenkamp
,
K. R.
,
2017
,
Thermoelectric Heat Pump Clothes Dryer Design Optimization
,
Oak Ridge National Lab (ORNL)
,
Oak Ridge, TN
.
18.
Somdalen
,
R.
, and
Köhler
,
J.
,
2018
, “
Theoretical Investigation of a Novel Thermoelectric Laundry Dryer Concept
,”
Mater. Today Proc.
,
5
(
4
), pp.
10323
10332
. 10.1016/j.matpr.2017.12.280
19.
Peng
,
C.
,
Ravi
,
S.
,
Patel
,
V. K.
,
Momen
,
A. M.
, and
Moghaddam
,
S.
,
2017
, “
Physics of Direct-Contact Ultrasonic Cloth Drying Process
,”
Energy
,
125
, pp.
498
508
. 10.1016/j.energy.2017.02.138
20.
Peng
,
C.
,
Momen
,
A. M.
, and
Moghaddam
,
S.
,
2017
, “
An Energy-Efficient Method for Direct-Contact Ultrasonic Cloth Drying
,”
Energy
,
138
, pp.
133
138
. 10.1016/j.energy.2017.07.025
21.
Momen
,
A. M.
,
Gluesenkamp
,
K. R.
,
Vineyard
,
E. A.
, and
Kisner
,
R. A.
,
2019
, “
Dryer Using High Frequency Vibration
,” No. 10,520,252, Oak Ridge National Lab (ORNL), Oak Ridge, TN.
22.
Peng
,
C.
, and
Moghaddam
,
S.
,
2020
, “
Energy Efficient Piezoelectrically Actuated Transducer for Direct-Contact Ultrasonic Drying of Fabrics
,”
Dry. Technol.
,
38
(
7
), pp.
879
888
. 10.1080/07373937.2019.1596119
23.
Patel
,
V. K.
,
Reed
,
F. K.
,
Kisner
,
R.
,
Peng
,
C.
,
Moghaddam
,
S.
, and
Momen
,
A. M.
,
2019
, “
Novel Experimental Study of Fabric Drying Using Direct-Contact Ultrasonic Vibration
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p.
021008
. 10.1115/1.4041596
24.
Dupuis
,
E. D.
,
Momen
,
A. M.
,
Patel
,
V. K.
, and
Shahab
,
S.
,
2019
, “
Electroelastic Investigation of Drying Rate in the Direct Contact Ultrasonic Fabric Dewatering Process
,”
Appl. Energy
,
235
, pp.
451
462
. 10.1016/j.apenergy.2018.10.100
25.
Peng
,
C.
, and
Moghaddam
,
S.
,
2019
,
The Study of Fabric Drying Using Direct-Contact Ultrasonic Vibration
,
IntechOpen
,
London, UK
.
26.
Dupuis
,
E. D.
,
Momen
,
A. M.
,
Patel
,
V. K.
, and
Shahab
,
S.
,
2020
, “
Coupling of Electroelastic Dynamics and Direct Contact Ultrasonic Drying Formulation for Annular Piezoelectric Bimorph Transducers
,”
Smart Mater. Struct.
,
29
(
4
), p.
45027
. 10.1088/1361-665X/ab79b8
27.
Srikiatden
,
J.
, and
Roberts
,
J. S.
,
2007
, “
Moisture Transfer in Solid Food Materials: A Review of Mechanisms, Models, and Measurements
,”
Int. J. Food Prop.
,
10
(
4
), pp.
739
777
. 10.1080/10942910601161672
28.
Erbay
,
Z.
, and
Icier
,
F.
,
2010
, “
A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results
,”
Crit. Rev. Food Sci. Nutr.
,
50
(
5
), pp.
441
464
. 10.1080/10408390802437063
29.
Ertekin
,
C.
, and
Firat
,
M. Z.
,
2017
, “
A Comprehensive Review of Thin-Layer Drying Models Used in Agricultural Products
,”
Crit. Rev. Food Sci. Nutr.
,
57
(
4
), pp.
701
717
. 10.1080/10408398.2014.910493
30.
Huang
,
D.
,
Tao
,
Y.
,
Li
,
W.
,
Sherif
,
S. A.
, and
Tang
,
X.
,
2020
, “
Heat Transfer Characteristics and Kinetics of Camellia Oleifera Seeds During Hot-Air Drying
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031017
. 10.1115/1.4045118
31.
Singh
,
P.
, and
Talukdar
,
P.
,
2020
, “
Drying Characteristics of Elephant Foot Yam and Performance Evaluation of Convective Dryer in Kinetically and Equilibrium Controlled Regime Under Varying Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
5
), p.
051005
. 10.1115/1.4045885
32.
Akyol
,
U.
,
Kahveci
,
K.
, and
Cihan
,
A.
,
2013
, “
Determination of Optimum Operating Conditions and Simulation of Drying in a Textile Drying Process
,”
J. Text. Inst.
,
104
(
2
), pp.
170
177
. 10.1080/00405000.2012.707900
33.
Akyol
,
U.
,
Erhan Akan
,
A.
, and
Durak
,
A.
,
2015
, “
Simulation and Thermodynamic Analysis of a Hot-Air Textile Drying Process
,”
J. Text. Inst.
,
106
(
3
), pp.
260
274
. 10.1080/00405000.2014.916062
34.
Cay
,
A.
,
Gurlek
,
G.
, and
Oglakcioglu
,
N.
,
2017
, “
Analysis and Modeling of Drying Behavior of Knitted Textile Materials
,”
Dry. Technol.
,
35
(
4
), pp.
509
521
. 10.1080/07373937.2016.1192190
35.
Hossain
,
M. A.
,
Woods
,
J. L.
, and
Bala
,
B. K.
,
2007
, “
Single-Layer Drying Characteristics and Colour Kinetics of Red Chilli
,”
Int. J. Food Sci. Technol.
,
42
(
11
), pp.
1367
1375
. 10.1111/j.1365-2621.2006.01414.x
36.
El-Beltagy
,
A.
,
Gamea
,
G. R.
, and
Essa
,
A. H. A.
,
2007
, “
Solar Drying Characteristics of Strawberry
,”
J. Food Eng.
,
78
(
2
), pp.
456
464
. 10.1016/j.jfoodeng.2005.10.015
37.
Roberts
,
J. S.
,
Kidd
,
D. R.
, and
Padilla-Zakour
,
O.
,
2008
, “
Drying Kinetics of Grape Seeds
,”
J. Food Eng.
,
89
(
4
), pp.
460
465
. 10.1016/j.jfoodeng.2008.05.030
38.
Chandra
,
P. K.
, and
Singh
,
R. P.
,
2017
,
Applied Numerical Methods for Food and Agricultural Engineers
,
CRC Press
,
Boca Raton, FL
.
39.
Avhad
,
M. R.
, and
Marchetti
,
J. M.
,
2016
, “
Mathematical Modelling of the Drying Kinetics of Hass Avocado Seeds
,”
Ind. Crops Prod.
,
91
, pp.
76
87
. 10.1016/j.indcrop.2016.06.035
40.
Satimehin
,
A.
,
Oluwamukomi
,
M.
,
Enujiugha
,
V. N.
, and
Bello
,
M.
,
2018
, “
Drying Characteristics and Mathematical Modelling of the Drying Kinetics of Oyster Mushroom (Pleurotus Ostreatus)
,”
IDS 2018. 21st International Drying Symposium Proceedings
,
Editorial Universitat Politècnica de València
,
Valencia, Spain
, pp.
513
520
.
41.
Abou
,
M. M. N.
,
Madougou
,
S.
, and
Boukar
,
M.
,
2019
, “
Effect of Drying Air Velocity on Drying Kinetics of Tomato Slices in a Forced-Convective Solar Tunnel Dryer
,”
J. Sustain. Bioenergy Syst.
,
9
(
2
), pp.
64
78
. 10.4236/jsbs.2019.92005
42.
Aghbashlo
,
M.
,
Kianmehr
,
M. H.
, and
Hassan-Beygi
,
S. R.
,
2010
, “
Drying and Rehydration Characteristics of Sour Cherry (Prunus Cerasus L.)
,”
J. Food Process. Preserv.
,
34
(
3
), pp.
351
365
. 10.1111/j.1745-4549.2008.00310.x
43.
Yi
,
X.-K.
,
Wu
,
W.-F.
,
Zhang
,
Y.-Q.
,
Li
,
J.-X.
, and
Luo
,
H.-P.
,
2012
, “
Thin-Layer Drying Characteristics and Modeling of Chinese Jujubes
,”
Math. Probl. Eng.
,
2012
.
44.
Whiting
,
M. L.
,
Li
,
L.
, and
Ustin
,
S. L.
,
2004
, “
Predicting Water Content Using Gaussian Model on Soil Spectra
,”
Remote Sens. Environ.
,
89
(
4
), pp.
535
552
. 10.1016/j.rse.2003.11.009
45.
Pedreño-Molina
,
J. L.
,
Monzó-Cabrera
,
J.
,
Toledo-Moreo
,
A.
, and
Sánchez-Hernández
,
D.
,
2005
, “
A Novel Predictive Architecture for Microwave-Assisted Drying Processes Based on Neural Networks
,”
Int. Commun. Heat Mass Transf.
,
32
(
8
), pp.
1026
1033
. 10.1016/j.icheatmasstransfer.2005.05.001
46.
Khazaei
,
J.
, and
Daneshmandi
,
S.
,
2007
, “
Modeling of Thin-Layer Drying Kinetics of Sesame Seeds: Mathematical and Neural Networks Modeling
,”
Int. Agrophysics
,
21
(
4
), p.
335
.
You do not currently have access to this content.