Abstract

Innovative design of microchannel heat sinks (MCHS) remains a contemporary research need to meet the increasing cooling demand of modern electronic industries. A transient three-dimensional conjugate heat transfer study has been carried out here for different combinations of constrictors like ribs or protrusions along with cavities on the sidewalls of a microchannel (MC). A facing pair of cavities with circular arc sections, together called a fan-shaped cavity (FC), has been considered. Each in the facing pair of ribs (R) or protrusions (P) is in the form of a part of cylinder or sphere, respectively. The results include the variations of Nusselt number, friction factor, and thermal performance over a range of Reynolds numbers from 140 to 605 in microchannels with rib (MCR), protrusion (MCP), or cavity pairs alone (MCFC), as well as with cavity-rib pairs (MCFCR) or cavity–protrusion pairs (MCFCP). Contrasting the highest thermal performance of 1.6 reported in an earlier study on MCFCR, a value as high as 1.76 has been obtained around Re of 550 for MCFCP with the relative values of cavity length, width, and pitch of 0.015, 0.5, and 0.0625, respectively, along with protrusion length and width of 0.01 and 0.4, respectively. The mechanisms leading to spiraling transverse streamlines in both MCFCR and MCFCP have been explained. The superior performance of MCFCP has presumably arisen from the vortex structure with no interference with the boundary layers at the top and bottom walls.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F.
,
1981
, “
High Performance Heat Sinking for VLAI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
. 10.1109/EDL.1981.25367
2.
Phillips
,
R. J.
,
1990
, “Microchannel Heat Sinks,”
Advances in Thermal Modelling of Electronic Components and Systems
, Vol.
2
,
A.
Bar-Cohen
, and
A. D.
Kraus
, eds.,
ASME
,
New York
, Chap. 3.
3.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
. 10.1016/S0017-9310(01)00337-4
4.
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Asendrych
,
D.
,
2005
, “
Conduction and Entrance Effects on Laminar Liquid Flow and Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2943
2954
. 10.1016/j.ijheatmasstransfer.2004.10.006
5.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2547
2556
. 10.1016/S0017-9310(03)00035-8
6.
Gulhane
,
N. P.
, and
Mahulikar
,
S. P.
,
2012
, “
Numerical Investigation on Laminar Microconvective Liquid Flow With Entrance Effect and Graetz Problem due to Variation in Thermal Properties
,”
Heat Transfer Eng.
,
33
(
8
), pp.
748
761
. 10.1080/01457632.2012.624877
7.
Toh
,
K. C.
,
Chen
,
X. Y.
, and
Chai
,
J. C.
,
2002
, “
Numerical Computation of Fluid Flow and Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
26
), pp.
5133
5141
. 10.1016/S0017-9310(02)00223-5
8.
Liu
,
C.
,
Teng
,
J. T.
,
Chu
,
J. C.
,
Chiu
,
Y. L.
,
Huang
,
S.
,
Jin
,
S.
,
Dang
,
T.
,
Greif
,
R.
, and
Pan
,
H. H.
,
2011
, “
Experimental Investigations on Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
3069
3080
. 10.1016/j.ijheatmasstransfer.2011.02.030
9.
Chai
,
L.
,
Xia
,
G.
,
Wang
,
L.
,
Zhou
,
M.
, and
Cui
,
Z.
,
2013
, “
Heat Transfer Enhancement in Microchannel Heat Sinks With Periodic Expansion–Constriction Cross-Sections
,”
Int. J. Heat Mass Transfer
,
62
, pp.
741
751
. 10.1016/j.ijheatmasstransfer.2013.03.045
10.
Datta
,
A.
,
Sanyal
,
D.
, and
Das
,
A. K.
,
2016
, “
Numerical Investigation of Heat Transfer in Microchannel Using Inclined Longitudinal Vortex Generator
,”
Appl. Thermal Eng.
,
108
, pp.
1008
1019
. 10.1016/j.applthermaleng.2016.07.165
11.
Datta
,
A.
,
Sharma
,
V.
,
Sanyal
,
D.
, and
Das
,
P.
,
2019
, “
A Conjugate Heat Transfer Analysis of Performance for Rectangular Microchannel With Trapezoidal Cavities and Ribs
,”
Int. J. Thermal Sci.
,
138
, pp.
425
446
. 10.1016/j.ijthermalsci.2018.12.020
12.
Johnson
,
T.
, and
Joubert
,
P.
,
1969
, “
The Influence of Vortex Generators on the Drag and Heat Transfer From a Circular Cylinder Normal to an Airstream
,”
ASME J. Heat Transfer
,
91
(
1
), pp.
91
99
. 10.1115/1.3580126
13.
Datta
,
A.
,
Sanyal
,
D.
,
Agrawal
,
A.
, and
Das
,
A. K.
,
2019
, “
A Review of Liquid Flow and Heat Transfer in Microchannels With Emphasis to Electronic Cooling
,”
Sadhana
,
44
(
12
), p.
234
. 10.1007/s12046-019-1201-2
14.
Xia
,
G.
,
Chai
,
L.
,
Zhou
,
M.
, and
Wang
,
H.
,
2011
, “
Effects of Structural Parameters on Fluid Flow and Heat Transfer in a Microchannel With Aligned Fan-Shaped Reentrant Cavities
,”
Int. J. Thermal Sci.
,
50
(
3
), pp.
411
419
. 10.1016/j.ijthermalsci.2010.08.009
15.
Ahmed
,
H. E.
, and
Mirghani
,
I. A.
,
2015
, “
Optimum Thermal Design of Triangular, Trapezoidal and Rectangular Grooved Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
66
, pp.
47
57
. 10.1016/j.icheatmasstransfer.2015.05.009
16.
Xia
,
G.
,
Yuling
,
Z.
, and
Zhenzhen
,
C.
,
2013
, “
Numerical Investigation of Thermal Enhancement in a Micro Heat Sink With Fan-Shaped Reentrant Cavities and Internal Ribs
,”
Appl. Thermal Eng.
,
58
(
1–2
), pp.
52
60
. 10.1016/j.applthermaleng.2013.04.005
17.
Zhai
,
Y. L.
,
Xia
,
G. D.
,
Liu
,
X. F.
, and
Li
,
Y. F.
,
2014
, “
Heat Transfer in the Microchannels With Fan-Shaped Reentrant Cavities and Different Ribs Based on Field Synergy Principle and Entropy Generation Analysis
,”
Int. J. Heat Mass Transfer
,
68
, pp.
224
233
. 10.1016/j.ijheatmasstransfer.2013.08.086
18.
Lan
,
J.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2011
, “
Flow and Heat Transfer in Micro Channels With Dimples and Protrusions
,”
ASME J. Heat Transfer
,
134
(
2
), p.
021901
.
19.
Li
,
P.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2016
, “
Laminar Flow and Forced Convective Heat Transfer of Shear-Thinning Power-Law Fluids in Dimpled and Protruded Micro Channels
,”
Int. J. Heat Mass Transfer
,
99
, pp.
372
382
. 10.1016/j.ijheatmasstransfer.2016.04.004
20.
Zheng
,
L.
,
Zhang
,
D.
,
Xie
,
Y.
, and
Xie
,
G.
,
2016
, “
Thermal Performance of Dimpled/Protruded Circular and Annular Microchannel Tube Heat Sink
,”
J. Taiwan Inst. Chem. Eng.
,
60
, pp.
342
351
. 10.1016/j.jtice.2015.10.026
21.
Li
,
P.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2014
, “
Heat Transfer and Flow Analysis of Al2O3- Water Nanofluids in Microchannel With Dimple and Protrusion
,”
Int. J. Heat Mass Transfer
,
73
, pp.
456
467
. 10.1016/j.ijheatmasstransfer.2014.02.042
22.
Xu
,
M.
,
Lu
,
H.
,
Gong
,
L.
,
Chai
,
J.
, and
Duan
,
X.
,
2016
, “
Parametric Numerical Study of the Flow and Heat Transfer in Microchannel With Dimples
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
348
357
. 10.1016/j.icheatmasstransfer.2016.06.002
23.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
,
2007
, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface
,”
J. Elect. Packag.
,
129
(
1
), pp.
63
70
. 10.1115/1.2429711
24.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
. 10.1016/0017-9310(81)90015-6
25.
Yang
,
C.
,
Li
,
D.
, and
Masliyah
,
J. H.
,
1998
, “
Modeling Forced Liquid Convection in Rectangular Microchannels With Electrokinetic Effects
,”
Int. J. Heat Mass Transfer
,
41
(
24
), pp.
4229
4249
. 10.1016/S0017-9310(98)00125-2
26.
Ghani
,
I. A.
,
Kamaruzaman
,
N.
, and
Sidik
,
N. A. C.
,
2017
, “
Heat Transfer Augmentation in a Microchannel Heat Sink With Sinusoidal Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1969
1981
. 10.1016/j.ijheatmasstransfer.2017.01.046
27.
Xie
,
G.
,
Zhang
,
F.
,
Sunden
,
B.
, and
Zhang
,
W.
,
2014
, “
Constructal Design and Thermal Analysis of Microchannel Heat Sinks With Multistage Bifurcations in Single-Phase Liquid Flow
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
791
802
. 10.1016/j.applthermaleng.2013.10.042
28.
Ghaedamini
,
H.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2013
, “
Developing Forced Convection in Converging– Diverging Microchannels
,”
Int. J. Heat Mass Transfer
,
65
, pp.
491
499
. 10.1016/j.ijheatmasstransfer.2013.06.036
You do not currently have access to this content.