Abstract

Liquefied petroleum gas (LPG) is widely used as a cooking fuel as it has higher energy content and produces lower emissions compared to other traditional fuels. Due to massive demand for LPG, aside from its limited reserve, performance improvement of the LPG cook-stoves is essential. In the present work, the thermal efficiency of a traditional cook stove has been studied both experimentally and numerically for LPG fuel. Based on the knowledge from the computational model concerning flow field and species transport parameters, the conventional cook-stove design has been modified for improving the efficiency. In the modified design of the stove, attachment of an annular metal plate insert and introduction of an extended spill-tray to close the gap around the burner are considered. The modifications result in favourable guidance of the flow of secondary air and hot product gases of combustion to ensure better heat transfer rate to the loading vessel. The thermal efficiency of the modified cook-stove is around 73.6%, which is about 4.7 percentage point improvement from that of an identical stove without the insert and extended spill-try.

References

1.
WLPGA
,
2017
,
World LPG Association: Annual Report
.
2.
Government of India, M. O. P. A. N. G. N. D.
,
2017
,
Annual Report of Petroleum and Natural Gas
.
3.
Basu
,
D.
,
Saha
,
R.
,
Ganguly
,
R.
, and
Datta
,
A.
,
2008
, “
Performance Improvement of LPG Cook Stoves Through Burner and Nozzle Modifications
,”
J. Energy Inst.
,
81
(
4
), pp.
218
225
. 10.1179/014426008X370951
4.
Das
,
M.
,
Ganguly
,
R.
,
Datta
,
A.
,
Verma
,
M. M.
, and
Bera
,
A. K.
,
2020
, “
Computational Fluid Dynamic Analyses of Flow and Combustion in a Domestic Liquefied Petroleum Gas Cookstove Burner—Part II: Burning Characteristics and Overall Performance
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031011
. 10.1115/1.4044861
5.
Jugjai
,
S.
,
Tia
,
S.
, and
Trewetasksorn
,
W.
,
2001
, “
Thermal Efficiency Improvement of an LPG Gas Cooker by a Swirling Central Flame
,”
Int. J. Energy Res.
,
25
(
8
), pp.
657
674
. 10.1002/er.708
6.
Kuntikana
,
P.
, and
Prabhu
,
S. V.
,
2016
, “
Heat Transfer Characteristics of Premixed Methane-Air Flame Jet Impinging Obliquely Onto a Flat Surface
,”
Int. J. Heat Mass Transfer
,
101
, pp.
133
146
. 10.1016/j.ijheatmasstransfer.2016.05.004
7.
Zhen
,
H. S.
,
Zhang
,
L.
,
Wei
,
Z. L.
,
Chen
,
Z. B.
, and
Huang
,
Z. H.
,
2019
, “
A Numerical Study of the Heat Transfer of an Impinging Round-Jet Methane Bunsen Flame
,”
Fuel
,
251
, pp.
730
738
. 10.1016/j.fuel.2019.04.077
8.
Remie
,
M. J.
,
Cremers
,
M. F. G.
,
Schreel
,
K. R. A. M.
, and
de Goey
,
L. P. H.
,
2007
, “
Analysis of the Heat Transfer of an Impinging Laminar Flame Jet
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2816
2827
. 10.1016/j.ijheatmasstransfer.2006.10.053
9.
Agrawal
,
G. K.
,
Chakraborty
,
S.
, and
Som
,
S. K.
,
2010
, “
Heat Transfer Characteristics of Premixed Flame Impinging Upwards to Plane Surfaces Inclined With the Flame Jet Axis
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1899
1907
. 10.1016/j.ijheatmasstransfer.2009.12.068
10.
Singh
,
S.
, and
Chander
,
S.
,
2014
, “
Heat Transfer Characteristics of Dual Flame With Outer Swirling and Inner Non-swirling Flame Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
77
, pp.
995
1007
. 10.1016/j.ijheatmasstransfer.2014.05.062
11.
Singh
,
G.
,
Chander
,
S.
, and
Ray
,
A.
,
2012
, “
Heat Transfer Characteristics of Natural Gas/Air Swirling Flame Impinging on a Flat Surface
,”
Exp. Therm. Fluid Sci.
,
41
, pp.
165
176
. 10.1016/j.expthermflusci.2012.04.013
12.
Chander
,
S.
, and
Ray
,
A.
,
2011
, “
Experimental and Numerical Study on the Occurrence of Off-Stagnation Peak in Heat Flux for Laminar Methane/Air Flame Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1179
1186
. 10.1016/j.ijheatmasstransfer.2010.10.035
13.
Li
,
H. B.
,
Zhen
,
H. S.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2010
, “
Effects of Plate Temperature on Heat Transfer and Emissions of Impinging Flames
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4176
4184
. 10.1016/j.ijheatmasstransfer.2010.05.040
14.
Hou
,
S. S.
, and
Ko
,
Y. C.
,
2005
, “
Influence of Oblique Angle and Heating Height on Flame Structure, Temperature Field and Efficiency of an Impinging Laminar Jet Flame
,”
Energy Convers. Manage.
,
46
(
6
), pp.
941
958
. 10.1016/j.enconman.2004.06.001
15.
Yousefi-Asli
,
V.
,
Houshfar
,
E.
,
Beygi-Khosroshahi
,
F.
, and
Ashjaee
,
M.
,
2018
, “
Experimental Investigation on Temperature Field and Heat Transfer Distribution of a Slot Burner Methane/Air Flame Impinging on a Curved Surface
,”
Appl. Therm. Eng.
,
129
, pp.
761
771
. 10.1016/j.applthermaleng.2017.10.084
16.
Li
,
H. B.
,
Wong
,
T. T.
,
Leung
,
C. W.
, and
Probert
,
S. D.
,
2006
, “
Thermal Performances and CO Emissions of Gas-Fired Cooker-Top Burners
,”
Appl. Energy
,
83
(
12
), pp.
1326
1338
. 10.1016/j.apenergy.2006.03.002
17.
Hou
,
S. S.
,
Lee
,
C. Y.
, and
Lin
,
T. H.
,
2007
, “
Efficiency and Emissions of a New Domestic Gas Burner With a Swirling Flame
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1401
1410
. 10.1016/j.enconman.2006.12.001
18.
Zhen
,
H. S.
,
Leung
,
C. W.
, and
Wong
,
T. T.
,
2014
, “
Improvement of Domestic Cooking Flames by Utilizing Swirling Flows
,”
Fuel
,
119
, pp.
153
156
. 10.1016/j.fuel.2013.11.025
19.
Boggavarapu
,
P.
,
Ray
,
B.
, and
Ravikrishna
,
R. V.
,
2014
, “
Thermal Efficiency of LPG and PNG-Fired Burners: Experimental and Numerical Studies
,”
Fuel
,
116
, pp.
709
715
. 10.1016/j.fuel.2013.08.054
20.
Özdemir
,
B.
,
2017
, “
Simulation of Turbulent Combustion in a Self-Aerated Domestic Gas Oven
,”
Appl. Therm. Eng.
,
113
, pp.
160
169
. 10.1016/j.applthermaleng.2016.10.205
21.
Dey
,
S.
,
Das
,
M.
,
Ganguly
,
R.
,
Datta
,
A.
,
Verma
,
M. M.
, and
Bera
,
A. K.
,
2020
, “
Computational Fluid Dynamic Analyses of Flow and Combustion in a Domestic Liquified Petroleum Gas Cookstove Burner—Part I: Design Optimization of Mixing Tube–Burner Assembly
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031010
. 10.1115/1.4044860
22.
ANSYS
,
2016
, “
Meshing User’s Guide V17.2
,”
Ansys Inc
.
23.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Academic Press
,
Cambridge, MA
.
24.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
25.
ANSYS
,
2016
, “
ANSYS LIBRARY 17.2,” Ansys Inc
.
26.
BIS
,
2002
,
IS 4246:2002 Domestic Gas Stoves for Use with Liquefied Petroleum Gases—Specification (Fifth Revision)
.
27.
Zhen
,
H. S.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2012
, “
Heat Transfer Characteristics of an Impinging Premixed Annular Flame Jet
,”
Appl. Therm. Eng.
,
36
(
1
), pp.
386
392
. 10.1016/j.applthermaleng.2011.10.053
You do not currently have access to this content.