Abstract

A numerical investigation on the melting process of paraffin wax RT44 under supergravity (5–20 g) was conducted to evaluate the effect of supergravity on the melting heat transfer characteristics. The simulations were conducted in a horizontally placed container with a constant heat flux of 5–50 kW/m2 maintained on the bottom wall under both supergravity and the earth gravity (1 g). The numerical data under supergravity are compared with those under the Earth gravity for all circumstances. The results indicate that the melting heat transfer characteristics of the phase change material (PCM) are affected by supergravity significantly (around 30%) within 20 g. With the increase of supergravity, the heating wall temperature decreases, and the liquid fraction as well as the melting rate increases. Meanwhile, the variation amplitudes of these melting characteristics decrease gradually until less than 2% at 20 g. The effect of supergravity can be attributed to the intensification of the natural convection due to buoyancy, yielding vortexes in internal flow and fluctuations of solid–liquid interface and temperature field.

References

References
1.
Ali
,
H. M.
,
Arshad
,
A.
,
Jabbal
,
M.
, and
Verdin
,
P. G.
,
2018
, “
Thermal Management of Electronics Devices With PCMs Filled Pin-Fin Heat Sinks: A Comparison
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1199
1204
. 10.1016/j.ijheatmasstransfer.2017.10.065
2.
Tay
,
N. H. S.
,
Liu
,
M.
,
Belusko
,
M.
, and
Bruno
,
F.
,
2017
, “
Review on Transportable Phase Change Material in Thermal Energy Storage Systems
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
264
277
. 10.1016/j.rser.2016.10.069
3.
Yuan
,
Y.
,
Gao
,
X.
,
Wu
,
H.
,
Zhang
,
Z.
,
Cao
,
X.
,
Sun
,
L.
, and
Yu
,
N.
,
2017
, “
Coupled Cooling Method and Application of Latent Heat Thermal Energy Storage Combined With pre-Cooling of Envelope: Method and Model Development
,”
Energy
,
119
, pp.
817
833
. 10.1016/j.energy.2016.11.058
4.
Dexter
,
P. F.
,
Martinez
,
M. I.
,
Maxwell
,
G. C.
, and
Watts
,
R. J.
,
1992
, “
Centrifuge Test of an Aircraft Vapor Cycle Environmental Control System
,”
Aerospace Technology Conference and Exposition
,
California
,
Oct. 5–8
, p.
922051
.
5.
Xie
,
L.
,
Xie
,
Y.
, and
Yu
,
J.
,
2015
, “
Phase Distributions of Boiling Flow in Helical Coils in High Gravity
,”
Int. J. Heat Mass Transfer
,
80
, pp.
7
15
. 10.1016/j.ijheatmasstransfer.2014.08.094
6.
Xu
,
Y.
,
Li
,
G.
, and
Chen
,
W.
,
2018
, “
Numerical Simulation of Flow Boiling in Micro-Channels During Maneuvering Flight
,”
Proceedings of CSAA/IET International Conference on Aircraft Utility Systems
,
Guiyang, China
,
June 19–22
, pp.
1
4
.
7.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
. 10.1016/j.rser.2010.08.007
8.
Nomura
,
T.
,
Zhu
,
C.
,
Nan
,
S.
,
Tabuchi
,
K.
,
Wang
,
S.
, and
Akiyama
,
T.
,
2016
, “
High Thermal Conductivity Phase Change Composite With a Metal-Stabilized Carbon-Fiber Network
,”
Appl. Energy
,
179
, pp.
1
6
. 10.1016/j.apenergy.2016.04.070
9.
Amaral
,
C.
,
Vicente
,
R.
,
Marques
,
P. A. A. P.
, and
Barros-Timmons
,
A.
,
2017
, “
Phase Change Materials and Carbon Nanostructures for Thermal Energy Storage: A Literature Review
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
1212
1228
. 10.1016/j.rser.2017.05.093
10.
Kandasamy
,
R.
,
Wang
,
X.
, and
Mujumdar
,
A. S.
,
2007
, “
Application of Phase Change Materials in Thermal Management of Electronics
,”
Appl. Therm. Eng.
,
27
(
17
), pp.
2822
2832
. 10.1016/j.applthermaleng.2006.12.013
11.
Baby
,
R.
, and
Balaji
,
C.
,
2012
, “
Thermal Management of Electronics Using Phase Change Material Based Pin Fin Heat Sinks
,”
J. Phys. Conf. Ser.
,
395
, p.
012134
. 10.1088/1742-6596/395/1/012134
12.
Pakrouh
,
R.
,
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
, and
Bahrampoury
,
R.
,
2015
, “
A Numerical Method for PCM-Based Pin Fin Heat Sinks Optimization
,”
Energy Convers. Manage.
,
103
, pp.
542
552
. 10.1016/j.enconman.2015.07.003
13.
Arshad
,
A.
,
Ali
,
H. M.
,
Ali
,
M.
, and
Manzoor
,
S.
,
2017
, “
Thermal Performance of Phase Change Material (PCM) Based Pin-Finned Heat Sinks for Electronics Devices: Effect of Pin Thickness and PCM Volume Fraction
,”
Appl. Therm. Eng.
,
112
, pp.
143
155
. 10.1016/j.applthermaleng.2016.10.090
14.
Sundarram
,
S. S.
, and
Li
,
W.
,
2014
, “
The Effect of Pore Size and Porosity on Thermal Management Performance of Phase Change Material Infiltrated Microcellular Metal Foams
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
147
154
. 10.1016/j.applthermaleng.2013.11.072
15.
Deng
,
Z.
,
Liu
,
X.
,
Zhang
,
C.
,
Huang
,
Y.
, and
Chen
,
Y.
,
2017
, “
Melting Behaviors of PCM in Porous Metal Foam Characterized by Fractal Geometry
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1031
1042
. 10.1016/j.ijheatmasstransfer.2017.05.126
16.
Rabienataj Darzi
,
A. A.
,
Jourabian
,
M.
, and
Farhadi
,
M.
,
2016
, “
Melting and Solidification of PCM Enhanced by Radial Conductive Fins and Nanoparticles in Cylindrical Annulus
,”
Energy Convers. Manage.
,
118
, pp.
253
263
. 10.1016/j.enconman.2016.04.016
17.
Fan
,
L.-W.
,
Fang
,
X.
,
Wang
,
X.
,
Zeng
,
Y.
,
Xiao
,
Y.-Q.
,
Yu
,
Z.-T.
,
Xu
,
X.
,
Hu
,
Y.-C.
, and
Cen
,
K.-F.
,
2013
, “
Effects of Various Carbon Nanofillers on the Thermal Conductivity and Energy Storage Properties of Paraffin-Based Nanocomposite Phase Change Materials
,”
Appl. Energy
,
110
, pp.
163
172
. 10.1016/j.apenergy.2013.04.043
18.
Humphries
,
W. R.
, and
Griggs
,
E. I.
,
1977
,
A Design Handbook for Phase Change Thermal Control and Energy Storage Devices
,
NASA Scientific and Technical Information Office
,
New York
.
19.
Veilleux
,
D. L.
,
Faghri
,
M.
,
Asako
,
Y.
, and
Charmchi
,
M.
,
2007
, “
Convection Enhancement in Melting by Electromagnetic Fields in a Low-Gravity Environment: Side Wall Heating
,”
Numer. Heat Transfer, Part A
,
51
(
2
), pp.
129
158
. 10.1080/10407780600710425
20.
Ma
,
C.
,
Sheng
,
Q.
, and
Tong
,
T.
,
2018
, “
Thermal Design and Simulation of a Space Phase Change Heat Exchanger
,”
Chin. J. Space Sci.
,
38
(
3
), pp.
409
417
.
21.
Chen
,
X.
,
Hao
,
G.
,
Yao
,
F.
, and
Zhang
,
C.
,
2019
, “
Numerical Study on Melting Phase Change Under Microgravity
,”
Microgravity Sci. Technol.
,
31
(
9
), pp.
793
803
. 10.1007/s12217-019-09710-0
22.
Zhang
,
J.
,
Sheng
,
Q.
,
Ren
,
W.
, and
Tong
,
T.
,
2016
, “
Numerical Simulation of Thermal Storage Device of Foam Composite Phase Change Material in Microgravity
,”
Chin. J. Space Sci.
,
36
(
3
), pp.
336
343
.
23.
Ruan
,
S.
,
Zhang
,
J.
,
Cao
,
J.
,
Wang
,
J.
, and
Xu
,
T.
,
2018
, “
Numerical Simulation of Melting Process of Phase Change Energy Storage Unit Under Microgravity
,”
J. Beijing Univ. Aeronaut. Astronaut.
,
44
(
10
), pp.
2224
2231
.
24.
Salgado Sánchez
,
P.
,
Ezquerro
,
J. M.
,
Porter
,
J.
,
Fernández
,
J.
, and
Tinao
,
I.
,
2020
, “
Effect of Thermocapillary Convection on the Melting of Phase Change Materials in Microgravity: Experiments and Simulations
,”
Int. J. Heat Mass Transfer
,
154
, p.
119717
. 10.1016/j.ijheatmasstransfer.2020.119717
25.
Li
,
X.
,
Zhu
,
Z.
,
Xu
,
Z.
,
Ma
,
T.
,
Zhang
,
H.
,
Liu
,
J.
,
Wang
,
X.
, and
Wang
,
Q.
,
2019
, “
A Three-Dimensional Pore-Scale Lattice Boltzmann Model for Investigating the Supergravity Effects on Charging Process
,”
Appl. Energy
,
254
, p.
113507
. 10.1016/j.apenergy.2019.113507
26.
Li
,
X.
,
Ma
,
T.
,
Liu
,
J.
,
Zhang
,
H.
, and
Wang
,
Q.
,
2018
, “
Pore-scale Investigation of Gravity Effects on Phase Change Heat Transfer Characteristics Using Lattice Boltzmann Method
,”
Appl. Energy
,
222
, pp.
92
103
. 10.1016/j.apenergy.2018.03.184
27.
Sparrow
,
E. M.
,
Patankar
,
S. V.
, and
Ramadhyani
,
S.
,
1977
, “
Analysis of Melting in the Presence of Natural Convection in the Melt Region
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
520
526
. 10.1115/1.3450736
28.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
,
13
(
3
), pp.
297
318
. 10.1080/10407788808913615
29.
Yadav
,
S.
, and
Chandramohan
,
V. P.
,
2018
, “
Numerical Analysis on Thermal Energy Storage Device With Finned Copper Tube for an Indirect Type Solar Drying System
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031009
. 10.1115/1.4039273
30.
Yadav
,
A. K.
,
Donepudi
,
T.
, and
Siddani
,
B. S.
,
2020
, “
Numerical and Experimental Investigation of Melting Characteristics of Phase Change Material-RT58
,”
Ther. Sci. Eng. Prog.
,
17
, p.
100378
. 10.1016/j.tsep.2019.100378
31.
Hong
,
Y.
,
Ye
,
W.-B.
,
Du
,
J.
, and
Huang
,
S.-M.
,
2019
, “
Solid-liquid Phase-Change Thermal Storage and Release Behaviors in a Rectangular Cavity Under the Impacts of Mushy Region and Low Gravity
,”
Int. J. Heat Mass Transfer
,
130
, pp.
1120
1132
. 10.1016/j.ijheatmasstransfer.2018.11.024
32.
Shatikian
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2005
, “
Numerical Investigation of a PCM-Based Heat Sink with Internal Fins
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3689
3706
. 10.1016/j.ijheatmasstransfer.2004.10.042
33.
Assis
,
E.
,
Katsman
,
L.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2007
, “
Numerical and Experimental Study of Melting in a Spherical Shell
,”
Int. J. Heat Mass Transfer
,
50
(
9
), pp.
1790
1804
. 10.1016/j.ijheatmasstransfer.2006.10.007
34.
Al-Abidi
,
A. A.
,
Mat
,
S.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammad
,
A. T.
,
2013
, “
Numerical Study of PCM Solidification in a Triplex Tube Heat Exchanger With Internal and External Fins
,”
Int. J. Heat Mass Transfer
,
61
, pp.
684
695
. 10.1016/j.ijheatmasstransfer.2013.02.030
35.
Seddegh
,
S.
,
Wang
,
X.
, and
Henderson
,
A. D.
,
2015
, “
Numerical Investigation of Heat Transfer Mechanism in a Vertical Shell and Tube Latent Heat Energy Storage System
,”
Appl. Therm. Eng.
,
87
, pp.
698
706
. 10.1016/j.applthermaleng.2015.05.067
36.
Asako
,
Y.
, and
Faghri
,
M.
,
1999
, “
Effect of Density Change on Melting of Unfixed Rectangular Phase-Change Material Under Low-Gravity Environment
,”
Numer. Heat Transfer
,
36
(
8
), pp.
825
838
. 10.1080/104077899274471
37.
Sleiti
,
A. K.
,
2008
, “
Effect of Vent Aspect Ratio on Unsteady Laminar Buoyant Flow Through Rectangular Vents in Large Enclosures
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4850
4861
. 10.1016/j.ijheatmasstransfer.2008.02.027
38.
Kumar
,
R.
,
Sleiti
,
A.
, and
Kapat
,
J.
,
2006
, “
Unsteady Laminar Buoyant Flow Through Rectangular Vents in Large Enclosures
,”
J. Thermophys. Heat Transfer
,
20
(
2
), pp.
276
284
. 10.2514/1.11438
You do not currently have access to this content.