Abstract

Planar movable tooth drives have a compact structure. However, as the size decreases, the heat dissipation capacity decreases; therefore, temperature control is required. A heat conduction model of the drive system, including the central wheel and movable tooth, is established, and the meshing point of the movable tooth and center wheel is considered the heat source. The heat flux density at the meshing point is determined, and the analytical equations describing the temperature increases of the center wheel and the movable tooth are derived. The effects of the input power and system parameters on the temperature increase of the system are analyzed. The results show that the temperature difference of the movable tooth is about 1.5 times the temperature of the center wheel, and the temperature increase near the heat source decreases by more than 15 °C as the movable tooth radius increases from 2 mm to 2.5 mm. The movable tooth radius and center distance have significant effects on the temperature increase and can be used as control parameters to prevent a temperature increase of the drive.

References

References
1.
Keith
,
S.
,
1982
,
Subtractive and Additive Differential Gear Reduction System
, US Patent No. 4338830A.
2.
Terada
,
H.
,
Makino
,
H.
, and
Imase
,
K.
,
1988
, “
Fundamental Analysis of Cycloid Ball Reducer (1st Report) Motion Principle
,”
JSPE
,
12
(
54
), pp.
2101
2106
. 10.2493/jjspe.54.2101
3.
Terada
,
H.
,
Makino
,
H.
, and
Imase
,
K.
,
1990
, “
Fundamental Analysis of Cycloid Ball Reducer (2nd Report) Radius of Curvature and Pressure Angle
,”
JSPE
,
56
(
4
), pp.
751
756
. 10.2493/jjspe.56.751
4.
Kenji
,
I.
,
1997
,
Ball-rolling type torque Transmission Device
, US Patent No. 5683323A.
5.
Terada
,
H.
, and
Imase
,
K.
,
2009
, “
Fundamental Analysis of a Cycloid Ball Reducer (5th Report)-Development of a two Stage Type Reduction Mechanism
,”
JSPE
,
12
(
75
), pp.
1418
1422
. 10.2493/jjspe.75.1418
6.
Terada
,
H.
,
2010
, “
The Development of Gearless Reducers With Rolling Balls
,”
J. Mech. Sci. Technol.
,
24
(
1
), pp.
189
195
. 10.1007/s12206-009-1155-0
7.
Bara
,
M.
,
Stan
,
S. D.
, and
Teutan
,
E.
,
2009
, “
Design and Virtual Reality Simulation of Frontal-Sinusoidal Ball Transmission
,”
Mechanika
,
78
(
4
), pp.
63
68
.
8.
Duan
,
L.
,
An
,
Z.
, and
Yang
,
R.
,
2016
, “
Mechanical Model of Coupling Rolling and Sliding Friction in Real-Time Non-clearance Precision Ball Transmission
,”
Tribol. Int.
,
103
, pp.
218
227
. 10.1016/j.triboint.2016.06.032
9.
Yang
,
R.
, and
An
,
Z.
,
2017
, “
Theoretical Calculation and Experimental Verification of the Elastic Angle of a Cycloid Ball Planetary Transmission Based on the Axial Pretightening Force
,”
Adv. Mech. Eng.
,
9
(
10
), p.
1687814017734112
. 10.1177/1687814017734112
10.
Xu
,
L.
, and
Song
,
W.
,
2018
, “
Elastic Hydrodynamic Lubrication Analysis for a Sine Movable Tooth Drive
,”
Adv. Mech. Eng.
,
10
(
12
), p.
1687814018814101
. 10.1177/1687814018814101
11.
Sun
,
P.
,
An
,
Z.
, and
Jiang
,
W.
,
2018
, “
Analysis of non-Hertz Contact Stress and Bearing Capacity on Meshing Pairs in a Real-Time non-Clearance Precision Ball Transmission
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
6
), p.
UNSP 304
. 10.1007/s40430-018-1197-2
12.
Moradikazerouni
,
A.
,
Afrand
,
M.
, and
Alsarraf
,
J.
,
2019
, “
Investigation of a Computer CPU Heat Sink Under Laminar Forced Convection Using a Structural Stability Method
,”
Int. J. Heat Mass Transfer
,
134
, pp.
1218
1226
. 10.1016/j.ijheatmasstransfer.2019.02.029
13.
Moradikazerouni
,
A.
,
Afrand
,
M.
, and
Alsarraf
,
J.
,
2019
, “
Comparison of the Effect of Five Different Entrance Channel Shapes of a Micro-Channel Heat Sink in Forced Convection With Application to Cooling a Supercomputer Circuit Board
,”
Appl. Therm. Eng.
,
150
, pp.
1078
1089
. 10.1016/j.applthermaleng.2019.01.051
14.
Wang
,
L.
,
Xu
,
J.
, and
Wang
,
J.
,
2018
, “
A Peridynamic Framework and Simulation of Non-Fourier and Nonlocal Heat Conduction
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1284
1292
. 10.1016/j.ijheatmasstransfer.2017.11.074
15.
Duda
,
P.
,
2019
, “
Simplification of 3D Transient Heat Conduction by Reducing It to an Axisymmetric Heat Conduction Problem and a New Inverse Method of the Problem Solution
,”
Int. J. Heat Mass Transfer
,
143
, p.
118492
. 10.1016/j.ijheatmasstransfer.2019.118492
16.
Kurata
,
K.
,
Yoshii
,
T.
, and
Uchida
,
S.
,
2012
, “
Visualization of Electroporation-Induced Temperature Rise Using Temperature-Sensitive Ink
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
7207
7212
. 10.1016/j.ijheatmasstransfer.2012.07.038
17.
Chen
,
K.
,
Wang
,
S.
, and
Song
,
M.
,
2016
, “
Temperature-Gradient-Aware Bionic Optimization Method for Heat Source Distribution in Heat Conduction
,”
Int. J. Heat Mass Transfer
,
100
, pp.
737
746
. 10.1016/j.ijheatmasstransfer.2016.05.011
18.
Taburdagitan
,
M.
, and
Akkok
,
M.
,
2006
, “
Determination of Surface Temperature Rise With Thermo-Elastic Analysis of Spur Gears
,”
Wear
,
261
(
5–6
), pp.
656
665
. 10.1016/j.wear.2006.01.019
19.
Chen
,
L.
,
Wu
,
X.
, and
Qin
,
D.
,
2011
, “
An Experimental Study on the Transient Temperature Test of the Planetary Gear Reducer of the Epbm
,”
J. Adv. Manuf. Syst.
,
10
(
1
), pp.
37
43
. 10.1142/S0219686711001953
20.
Wang
,
Y.
,
Niu
,
W.
, and
Chen
,
Y.
,
2016
, “
Convection Heat Transfer and Temperature Analysis of Oil Jet Lubricated Spur Gears
,”
Iidustral Lubr. Tribol.
,
68
(
6
), pp.
624
631
. 10.1108/ILT-10-2015-0145
21.
Golbakhshi
,
H.
, and
Namjoo
,
M.
,
2017
, “
Thermo-Structural Analysis on Evaluating Effects of Friction and Transient Heat Transfer on Performance of Gears in High-Precision Assemblies
,”
J. Cent. South Univ.
,
24
(
1
), pp.
71
80
. 10.1007/s11771-017-3410-3
22.
Evans
,
S. M.
, and
Keogh
,
P. S.
,
2016
, “
Efficiency and Running Temperature of a Polymer-Steel Spur Gear Pair From Slip/Roll Ratio Fundamentals
,”
Tribol. Int.
,
97
, pp.
379
389
. 10.1016/j.triboint.2016.01.052
23.
Andersson
,
M.
,
Sosa
,
M.
, and
Olofsson
,
U.
,
2017
, “
Efficiency and Temperature of Spur Gears Using Spray Lubrication Compared to Dip Lubrication
,”
Proc. Inst. Mech. Eng., Part J
,
231
(
11
), pp.
1390
1396
. 10.1177/1350650117695709
24.
Yang
,
Y.
,
Li
,
W.
, and
Wang
,
J.
,
2019
, “
On the Mixed EHL Characteristics, Friction and Flash Temperature in Helical Gears With Consideration of 3D Surface Roughness
,”
Ind. Lubr. Tribol.
,
71
(
1
), pp.
10
21
. 10.1108/ILT-04-2017-0113
25.
Roda
,
C. V.
, and
Sanchez
,
M. F.
,
2019
, “
A 2D Finite Element Based Approach to Predict the Temperature Field in Polymer Spur Gear Transmissions
,”
Mech. Mach. Theory
,
133
, pp.
195
210
. 10.1016/j.mechmachtheory.2018.11.019
26.
Pan
,
W.
,
Li
,
X.
, and
Wang
,
L.
,
2019
, “
Nonlinear Response Analysis of Gear-Shaft-Bearing System Considering Tooth Contact Temperature and Random Excitations
,”
Appl. Math. Model.
,
68
, pp.
113
136
. 10.1016/j.apm.2018.10.022
27.
Ozisik
,
M. N.
,
1980
,
Heat Conditions
,
John Wiley
,
New York
.
28.
Li
,
L.
,
Liang
,
S.
, and
Zhou
,
J.
,
2015
, “
Thermal Analysis of the Center Wheel for Swinging Movable Tooth Drive
,”
J. Sichuan Univ. (Engineering Science Edition)
,
47
(
4
), pp.
146
150
.
You do not currently have access to this content.