Abstract

This study aims to understand the effect of flow structures within the inter-rib regions of a novel permeable rib configuration in vertical and horizontal streamwise planes upon surface heat transfer parameters. In this investigation, the liquid crystal thermography (LCT) and particle image velocimetry (PIV) are used to extract the local heat transfer and flow-field information, respectively. The effect of slit-converging angle (ϕ = 0 deg, 5 deg, 10 deg, and 15 deg) are examined at a typical Reynolds number of 42,500 and relative rib pitch ratio of 10. Surface- and spanwise-average and overall augmentation Nusselt numbers are obtained along with the pressure drop measurements. Flow-field experiments are performed in both vertical and horizontal streamwise planes, and the results are expressed in terms of mean velocities, stream traces, turbulent statistics, coherent structures, and turbulent kinetic energy budgets. Critical points are also identified on the basis of critical point theory, which provides evidences of the different flow phenomena accountable for enhance mixing between the ribs. The secondary flow coming from the slit shows three-dimensionality in the flow resulting to higher turbulence intensity and rotational motion (say higher turbulent mixing), and thereby leading to high heat transfer just behind the permeable rib. The permeable ribs are also helpful in the reduction of friction factor by 32% with a typical ϕ value of 5 deg, compared to solid ribs, while the thermohydraulic performance increases with increasing ϕ from 0 deg to 15 deg up to 21%. The pentagonal ribs with convergent slit provide comparable or better performance among the permeable rib geometries used in the pertinent literature.

References

References
1.
Webb
,
R. L.
,
1994
,
Principles of Enhanced Heat Transfer
,
John Wiley and Sons
,
New York
2.
Ligrani
,
P. M.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, pp.
1
32
. 10.1155/2013/275653
3.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press, Taylor and Francis Group
,
Boca Raton, FL
.
4.
Chen
,
A. F.
,
Shiau
,
C. C.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2019
, “
Heat Transfer in a Rotating Two-Pass Rectangular Channel Featuring a Converging Tip Turn With Various 45 deg Rib Coverage Designs
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061015
. 10.1115/1.4043471
5.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,”
Int. J. Heat Mass Transfer
,
21
(
8
), pp.
1143
1156
. 10.1016/0017-9310 (78)90113-8
6.
Rau
,
G.
,
Cakan
,
M.
,
Moeller
,
D.
, and
Arts
,
T.
,
1998
, “
The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
368
375
. 10.1115/1.2841415
7.
Liou
,
T. M.
,
Chen
,
C. C.
, and
Tsai
,
T. W.
,
2000
, “
Heat Transfer and Fluid Flow in a Square Duct With 12 Different Shaped Vortex Generators
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
327
335
. 10.1115/1.521487
8.
Chandra
,
P. R.
,
Alexander
,
C. R.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer and Friction Behaviours in Rectangular Channels With Varying Number of Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
46
(
3
), pp.
481
495
. 10.1016/S0017-9310(02)00297-1
9.
Casarsa
,
L.
, and
Arts
,
T.
,
2005
, “
Experimental Investigation of the Aerothermal Performance of a High Blockage Rib-Roughened Cooling Channel
,”
ASME J. Turbomach.
,
127
(
3
), pp.
580
588
. 10.1115/1.1928933
10.
Lei
,
J.
,
Han
,
J. C.
, and
Huh
,
M.
,
2012
, “
Effect of Rib Spacing on Heat Transfer in a Two Pass Rectangular Channel (AR = 2:1) at High Rotation Numbers
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091901
. 10.1115/1.4006298
11.
Brahim
,
B.
,
2017
, “
Numerical Simulation of the Effect of Rib Orientation on Fluid Flow and Heat Transfer in Rotating Serpentine Passages
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011008
. 10.1115/1.4034597
12.
Patel
,
S. S.
, and
Lanjewar
,
A.
,
2019
, “
Heat Transfer and Friction Factor Correlations for Solar Air Heater With Gap in V-rib With Symmetrical Gap and Staggered Ribs
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), pp.
1
38
. 10.1115/1.4045251
13.
Mayo
,
I.
,
Arts
,
T.
, and
Gicquel
,
L. Y. M.
,
2018
, “
The Three-Dimensional Flow Field and Heat Transfer in a Rib-Roughened Channel at Large Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
123
(
8
), pp.
848
866
. 10.1016/j.ijheatmasstransfer.2018.03.009
14.
Ekkad
,
S. V.
,
Huang
,
Y.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators and Bleed Holes
,”
Int. J. Heat Mass Transfer
,
41
(
23
), pp.
3781
3791
. 10.1016/S0017-9310(98)00099-4
15.
Tsia
,
J. P.
, and
Hwang
,
J. J.
,
1999
, “
Measurements of Heat Transfer and Fluid Flow in a Rectangular Duct With Alternate Attached-Detached Rib-Arrays
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
2071
2083
. 10.1016/S0017-9310(98)00300-7
16.
Choi
,
E. Y.
,
Choi
,
Y. D.
,
Lee
,
W. S.
,
Chung
,
J. T.
, and
Kwak
,
J. S.
,
2013
, “
Heat Transfer Augmentation Using a Rib-Dimple Compound Cooling Technique
,”
App. Therm. Eng.
,
51
(
1–2
), pp.
435
441
. 10.1016/j.applthermaleng.2012.09.041
17.
Qayoum
,
A.
, and
Panigrahi
,
P. K.
,
2015
, “
Combined Influence of Synthetic Jet and Surface-Mounted Rib on Heat Transfer in a Square Channel
,”
ASME J. Heat Transfer
,
137
(
2
), p.
121004
. 10.1115/1.4030918
18.
Singh
,
P.
,
Pandit
,
J.
, and
Ekkad
,
S. V.
,
2017
, “
Characterization of Heat Transfer Enhancement and Frictional Losses in a Two-Pass Square Duct Featuring Unique Combinations of Rib Turbulators and Cylindrical Dimples
,”
Int. J. Heat Mass Transfer
,
106
(
3
), pp.
629
647
. 10.1016/j.ijheatmasstransfer.2016.09.037
19.
Wu
,
H. W.
,
Zirakzadeh
,
H.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2018
, “
Heat Transfer in a Rib and Pin Roughened Rotating Multipass Channel With Hub Turning Vane and Trailing-Edge Slot Ejection
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021011
. 10.1115/1.4037584
20.
Wang
,
L.
, and
Sunden
,
B.
,
2007
, “
Experimental Investigation of Local Heat Transfer in a Square Duct With Various-Shaped Ribs
,”
Heat Mass Transfer
,
43
(
8
), pp.
759
766
. 10.1007/s00231-006-0190-y
21.
Ali
,
M. S.
,
Tariq
,
A.
, and
Gandhi
,
B. K.
,
2013
, “
Flow and Heat Transfer Investigation Behind Trapezoidal Rib Using PIV and LCT Measurements
,”
Exp. Fluids
,
54
(
5
), p.
1520–1–15
. 10.1007/s00348-013-1520-8
22.
Ali
,
M. S.
,
Sharma
,
N.
, and
Tariq
,
A.
,
2019
, “
Heat Transfer and Flow Field Features Between Surface Mounted Trapezoidal-Ribs
,”
J Mech. Sci. Tech.
,
33
(
10
), pp.
5017
5023
. 10.1007/s12206-019-0940-7
23.
Sharma
,
N.
,
Tariq
,
A.
, and
Mishra
,
M.
,
2019
, “
Experimental Investigation of Heat Transfer Enhancement in Rectangular Duct With Pentagonal Ribs
,”
Heat Transf. Eng.
,
40
(
1–2
), pp.
147
165
. 10.1080/01457632.2017.1421135
24.
Sharma
,
N.
,
Tariq
,
A.
, and
Mishra
,
M.
,
2019
, “
Aerothermal Characteristics of a Rectangular Duct With Periodic Trapezium Ribs
,”
J. Enhanc. Heat Transfer
,
26
(
4
), pp.
295
315
. 10.1615/JEnhHeatTransf.2018028268
25.
Sharma
,
N.
, and
Choudhary
,
R.
,
2020
, “Multi-Objective Performance Optimization of a Ribbed Solar Air Heater,”
Solar Energy. Energy, Environment, and Sustainability
,
H.
Tyagi
,
P.
Chakraborty
,
S.
Powar
, and
A.
Agarwal
, eds.,
Springer
,
Singapore
, pp.
77
93
.
26.
Nikitopoulos
,
D. E.
,
Eliades
,
V.
, and
Acharya
,
S.
,
2001
, “
Heat Transfer Enhancements in Rotating Two-Pass Coolant Channels With Profiled Ribs: Part 2—Detailed Measurements
,”
ASME J. Turbomach.
,
123
(
1
), pp.
107
114
. 10.1115/1.1331538
27.
Liu
,
J.
,
Hussain
,
S.
,
Wang
,
J.
,
Wang
,
L.
,
Xie
,
G.
, and
Sunden
,
B.
,
2018
, “
Heat Transfer Enhancement and Turbulent Flow in a High Aspect Ratio Channel (4:1) With Ribs of Various Truncation Types and Arrangements
,”
Int. J. Therm. Sci.
,
123
(
1
), pp.
99
116
. 10.1016/j.ijthermalsci.2017.09.013
28.
Sharma
,
N.
,
Tariq
,
A.
, and
Mishra
,
M.
,
2018
, “
Detailed Heat Transfer and Fluid Flow Investigation in a Rectangular Duct With Truncated Prismatic Ribs
,”
Exp. Therm. Fluid Sci.
,
96
(
9
), pp.
383
396
. 10.1016/j.expthermflusci.2018.03.029
29.
Hwang
,
J. J.
, and
Liou
,
T. M.
,
1994
, “
Augmented Heat Transfer in a Rectangular Channel With Permeable Ribs Mounted on the Wall
,”
ASME J. Heat Transfers
,
116
(
4
), pp.
912
920
. 10.1115/1.2911466
30.
Hwang
,
J. J.
, and
Liou
,
T. M.
,
1995
, “
Heat Transfer and Friction in a Low-Aspect-Ratio Rectangular Channel With Staggered Perforated Ribs on Two Opposite Walls
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
843
850
. 10.1115/1.2836300
31.
Hwang
,
J. J.
,
1998
, “
Heat Transfer-Friction Characteristic Comparison in Rectangular Ducts With Slit and Solid Ribs Mounted on One Wall
,”
ASME J. Heat Transfer
,
120
(
3
), pp.
709
716
. 10.1115/1.2824340
32.
Sara
,
O. N.
,
Pekdemir
,
T.
,
Yapici
,
S.
, and
Yilmaz
,
M.
,
2001
, “
Heat Transfer Enhancement in a Channel Flow With Perforated Rectangular Blocks
,”
Int. J. Heat Fluid Flow
,
22
(
5
), pp.
509
518
. 10.1016/S0142-727X(01)00117-5
33.
Liou
,
T. M.
,
Chen
,
S. H.
, and
Shih
,
K. C.
,
2002
, “
Numerical Simulation of Turbulent Flow Field and Heat Transfer in a Two-Dimensional Channel With Periodic Slit Ribs
,”
Int. J. Heat Mass Transfer
,
45
(
22
), pp.
4493
4505
. 10.1016/S0017-9310(02)00157-6
34.
Moon
,
S. W.
, and
Lau
,
S. C.
,
2003
, “
Heat Transfer Between Blockages With Holes in a Rectangular Channel
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
587
594
. 10.1115/1.1576812
35.
Nuntadusit
,
C.
,
Wae-hayee
,
M.
,
Bunyajitradulya
,
A.
, and
Eiamsa-ard
,
S.
,
2012
, “
Thermal Visualization on Surface With a Transverse Perforated Rib
,”
Int. Commun. Heat Mass Transfer
,
39
(
5
), pp.
634
639
. 10.1016/j.icheatmasstransfer.2012.03.001
36.
Tariq
,
A.
,
Panigrahi
,
P. K.
, and
Muralidhar
,
K.
,
2004
, “
Flow and Heat Transfer in the Wake of a Surface Mounted Rib With a Slit
,”
Exp. Fluids
,
37
(
5
), pp.
701
719
. 10.1007/s00348-004-0861-8
37.
Panigrahi
,
P. K.
,
Schroeder
,
A.
, and
Kompenhans
,
J.
,
2008
, “
Turbulent Structures and Budgets Behind Permeable Ribs
,”
Exp. Therm. Fluid Sci.
,
32
(
4
), pp.
1011
1033
. 10.1016/j.expthermflusci.2007.11.019
38.
Qayoum
,
A.
, and
Panigrahi
,
P. K.
,
2018
, “
Experimental Investigation of Heat Transfer Enhancement in a Two-Pass Square Duct by Permeable Ribs
,”
Heat Transfer Eng.
,
40
(
8
), pp.
640
651
. 10.1080/01457632.2018.1436649
39.
Ali
,
M. S.
,
Tariq
,
A.
, and
Gandhi
,
B. K.
,
2016
, “
Role of Chamfering Angles and Flow Through Slit on Heat Transfer Augmentation Behind a Surface-Mounted Rib
,”
ASME J. Heat Transfer
,
138
(
11
), pp.
111901
111916
. 10.1115/1.4033747
40.
Zheng
,
D.
,
Wang
,
X.
, and
Yuan
,
Q.
,
2019
, “
The Flow and Heat Transfer Characteristics in a Rectangular Channel With Convergent and Divergent Slit Ribs
,”
Int. J. Heat Mass Transfer
,
141
(
10
), pp.
464
475
. 10.1016/j.ijheatmasstransfer.2019.06.060
41.
Zheng
,
D.
,
Wang
,
X.
, and
Yuan
,
Q.
,
2019
, “
Numerical Investigation on the Flow and Heat Transfer Characteristics in a Rectangular Channel With V-Shaped Slit Ribs
,”
Infrared Phys. Technol.
,
101
(
6
), pp.
56
67
. 10.1016/j.infrared.2019.06.004
42.
Sharma
,
N.
,
Tariq
,
A.
, and
Mishra
,
M.
,
2017
,
Fluid Mechanics and Fluid Power–Contemporary Research,Lecture Notes in Mechanical Engineering
,
A.K.
Saha
,
D.
Das
,
R.
Srivastava
,
P.K.
Panigrahi
, and
K.
Muralidhar
, eds.,
Springer
,
India
, pp.
775
784
.
43.
Sharma
,
N.
,
Ali
,
M. S.
,
Tariq
,
A.
, and
Mishra
,
M.
,
2018
, “
Detailed Heat Transfer and Friction Factor Characteristics in a Rectangular Duct With Alternate Solid and Converging-Slit Ribs
,”
Exp. Heat Transf.
,
31
(
6
), pp.
552
570
. 10.1080/08916152.2018.1463306
44.
Tariq
,
A.
,
Sharma
,
N.
, and
Mishra
,
M.
,
2018
, “
Aerothermal Characteristics of Solid and Slitted Pentagonal Rib Turbulators
,”
ASME J. Heat Transfer
,
140
(
6
), p.
061901
. 10.1115/1.4039398
45.
Pountney
,
O.
,
Cho
,
G. H.
, and
Lock
,
J. M.
,
2012
, “
Solutions of Fourier’s Equation Appropriate for Experiments Using Thermochromic Liquid Crystal
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5908
5915
. 10.1016/j.ijheatmasstransfer.2012.06.001
46.
Armellini
,
A.
,
Casarsa
,
L.
, and
Giannattasio
,
P.
,
2009
, “
Separated Flow Structures Around a Cylindrical Obstacle in a Narrow Channel
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
604
619
. 10.1016/j.expthermflusci.2008.12.005
You do not currently have access to this content.