Abstract

This paper deals with the experimental and numerical investigations of seven integrated circuit (IC) chips cooled using the water flowing inside the cold plate at different flowrates. The study includes the supply of three different heat input cases under four different flowrates (0.063 kg/s, 0.125 kg/s, 0.25 kg/s, and 0.5 kg/s) to cool the high heat-generating IC chips mounted on the SMPS board at various positions. The optimal configuration (71-11-74-76-65-24-15) for the arrangement of the 7 IC chips is considered for the analysis. The numerical simulations are carried out using the commercial software ansys fluent (R-16) to support the experiments. Both the results (IC chips temperature) agree with each other in the error band of 8–14%. The smallest chip U6 attains the maximum temperature, as its heat attenuation rate is very high. The water flowing inside the cold plate absorbs the heat from the IC chips; by increasing the flowrate (Reynolds number increases), there is an increase in the convective heat transfer coefficient of the chips (Nusselt number increases) and ultimately cools these faster. A correlation is proposed for the Nusselt number of the chips with the Reynolds number of the flow. The results suggest that the liquid cold plate plays a vital role in the cooling of the IC chips and leads to better thermal management.

References

1.
Pfahl
,
R. C.
, and
Mcelroy
,
J.
,
2005
, “
The 2004 International Electronics Manufacturing Initiative (INEMI) Technology Roadmaps
,”
Conference on High Density Microsystem Design and Packaging and Component Failure Analysis
,
Shanghai, China
,
June 27–29
.
2.
Patil
,
N. G.
, and
Hotta
,
T. K.
,
2018
, “
A Review on Cooling of Discrete Heated Modules Using Liquid Jet Impingement
,”
Front. Heat Mass Transfer
,
11
(
16
), pp.
1
13
. 10.5098/hmt.11.16
3.
Mathew
,
V. K.
, and
Hotta
,
T. K.
,
2018
, “
Numerical Investigation on Optimal Arrangement of IC Chips Mounted on a SMPS Board Cooled Under Mixed Convection
,”
Therm. Sci. Eng. Prog.
,
7
, pp.
221
229
. 10.1016/j.tsep.2018.06.010
4.
Hotta
,
T. K.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2015
, “
Experiment Driven ANN—GA Based Technique for Optimal Distribution of Discrete Heat Sources Under Mixed Convection
,”
Exp. Heat Transfer
,
28
(
3
), pp.
298
315
. 10.1080/08916152.2013.871867
5.
Hotta
,
T. K.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2014
, “
Optimal Distribution of Discrete Heat Sources Under Mixed Convection—A Heuristic Approach
,”
ASME J. Heat Transfer
,
136
(
10
), p.
104503
. 10.1115/1.4027350
6.
Copeland
,
D.
,
2017
, “
Fundamental Performance Limits of Heat Sinks
,”
ASME J. Electron. Packag.
,
125
(
2
), pp.
221
225
. 10.1115/1.1569262
7.
Saini
,
M.
, and
Webb
,
R.
,
2002
, “
Heat Rejection Limits of Air Cooled Plane Fin Heat Sinks
,”
Intersociety Conference on Thermal Phenomena in Electronic Systems
,
Orlando, FL
,
May 29–June 1
, pp.
1
8
.
8.
Patil
,
N. G.
, and
Hotta
,
T. K.
,
2018
, “
Role of Working Fluids on the Cooling of Discrete Heated Modules : A Numerical Approach
,”
Sadhana—Acad. Proc. Eng. Sci.
,
43
(
187
), pp.
1
9
. 10.1007/s12046-018-0950-7
9.
Chu
,
R.
,
2017
, “
The Challenges of Electronic Cooling Past, Current and Future
,”
ASME J. Electron. Packag.
,
126
(
4
), pp.
491
500
. 10.1115/1.1839594
10.
Chanda
,
S.
,
Balaji
,
C.
,
Venkateshan
,
S. P.
, and
Rao
,
G.
,
2017
, “
Estimation of Principal Thermal Conductivities of Layered Honeycomb Composites Using ANN—GA Based Inverse Technique
,”
Int. J. Therm. Sci.
,
111
, pp.
423
436
. 10.1016/j.ijthermalsci.2016.09.011
11.
Wang
,
T.
,
Gu
,
B.
,
Zhao
,
P.
, and
Qian
,
C.
,
2015
, “
Numerical Investigation of Liquid Cooling Cold Plate for Power Control Unit in Fuel Cell Vehicle
,”
Microelectron. Reliab.
,
55
(
7
), pp.
1077
1088
. 10.1016/j.microrel.2015.03.015
12.
Wang
,
P.
, and
Bar-cohen
,
A.
,
2016
, “
Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module
,”
ASME J. Electron. Packag.
,
135
(
2
), pp.
1
11
. 10.1115/1.4023215
13.
Kearney
,
D.
, and
Griffin
,
J.
,
2014
, “
An Open Loop Pulsating Heat Pipe for Integrated Electronic Cooling Applications
,”
ASME. J. Heat Transfer
,
136
(
8
), pp.
3
10
. 10.1115/1.4027131
14.
Wagner
,
G.
,
Schaadt
,
J.
,
Dixon
,
J.
,
Chan
,
G.
, and
Maltz
,
W.
,
2016
, “
Test Results From the Comparison of Three Liquid Cooling Methods for High-Power Processors
,”
15th IEEE Intersociety Conference on Thermal and Thermo-Mechanical Phenomena in Electronic Systems
,
Las Vegas, NV
,
May 31–June 3
, pp.
619
625
.
15.
Liu
,
F.
,
Duan
,
B.
,
Yu
,
X.
,
Wu
,
R.
, and
Luo
,
X.
,
2017
, “
A Study on a Simplified Liquid Cooling System With a Pump Serving as Cold Plate
,”
IEEE 18th Electronic Packaging Technology Conference
,
Harbin, China
,
Aug. 16–19
, pp.
187
191
.
16.
Ramakrishnan
,
B.
,
Hadad
,
Y.
,
Alkharabsheh
,
S.
, and
Chiarot
,
P. R.
,
2018
, “
Experimental Characterization of Cold Plates Used in Cooling Multi-Chip Server Modules (MCM)
,”
17th IEEE Intersociety Conference on Thermal and Thermo Mechanical Phenomena in Electronic Systems
,
San Diego, CA
,
May 29–June 1
, pp.
664
672
.
17.
Sparrow
,
E.
,
Chevalier
,
P.
, and
Abraham
,
J.
,
2006
, “
The Design of Cold Plates for the Thermal Management of Electronic Equipment
,”
Heat Transfer Eng.
,
27
(
7
), pp.
6
16
. 10.1080/01457630600742308
18.
Narvaez
,
J.
,
Thornburg
,
H.
,
Rumpfkeil
,
M.
, and
Wilkens
,
R.
,
2014
, “
Computational Modelling of a Micro-Channel Cold Plate Pressure, Velocity, and Temperature Profiles
,”
Int. J. Heat Mass Transfer
,
78
, pp.
90
98
. 10.1016/j.ijheatmasstransfer.2014.06.006
19.
Patil
,
N. G.
, and
Hotta
,
T. K.
,
2020
, “
A Combined Numerical Simulation and Optimization Model for the Cooling of IC Chips Under Forced Convection
,”
Int. J. Mod. Phys. C
,
31
(
6
), p.
2050081
. 10.1142/S0129183120500813
20.
Venkateshan
,
S. P.
,
2008
,
Mechanical Measurements
,
Anne Books
,
New Delhi
21.
Coker
,
A. K.
,
1995
,
Fortran Programs for Chemical Process Design, Analysis, and Simulation
,
Gulf Professional Publishing
,
Houston, TX
.
You do not currently have access to this content.