Abstract

Using two-dimensional numerical simulations of the momentum, mass, and energy conservation equations, we investigate the enhancement of heat transfer in a rectangular micro-fluidic channel. The fluid inside the channel is assumed to be stationary initially and actuated by the motion imparted by mechanical stirrers, which are attached to the bottom of the channel. Based on the direction of the oscillation of the stirrers, the boundary conditions can be classified as either no-slip (when the oscillation is perpendicular to the length of the channel) or periodic (when the oscillation is along the length of the channel). The heat transfer enhancement due to the motion of the stirrers (with respect to the stationary stirrer situation) is analyzed in terms of the Reynolds number (ranging from 0.7 to 1000) and the Peclet number (ranging from 10 to 100). We find that the heat transfer first increases and then decreases with an increase in the Reynolds number for any given Peclet number. The heat transferred is maximum at a Reynolds number of 20 for the no-slip case and at a Reynolds number of 40 for the periodic case. For a given Peclet and Reynolds number, the heat flux for the periodic case is always larger than the no-slip case. We explain the reason for these trends using time-averaged flow velocity profiles induced by the oscillation of the mechanical stirrers.

References

References
1.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2005
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
New York
.
2.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091001
. 10.1115/1.4024354
3.
Sobhan
,
C. B.
, and
Peterson
,
G. P.
,
2008
,
Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications
,
CRC Press
,
Boca Raton, FL
.
4.
Jiang
,
L.
,
Mikkelsen
,
J.
,
Koo
,
J.
,
Huber
,
D.
,
Yao
,
S.
,
Zhang
,
L.
,
Zhou
,
P.
,
Maveety
,
J. G.
,
Prasher
,
R.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
,
2002
, “
Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
3
), pp.
347
355
. 10.1109/TCAPT.2002.800599
5.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows
,”
ASME 2004 2nd International Conference on Microchannels and Minichannels
,
Rochester, NY
,
June 17–19
,
American Society of Mechanical Engineers
, pp.
141
148
.
6.
Yokoyama
,
Y.
,
Takeda
,
M.
,
Umemoto
,
T.
, and
Ogushi
,
T.
,
2003
, “
Active Micro Heat Transport Device Using Thermal Pumping System
,”
The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003
,
Kyoto, Japan
,
Jan. 23
,
IEEE
, pp.
108
111
.
7.
Singhal
,
V.
, and
Garimella
,
S. V.
,
2005
, “
A Novel Valveless Micropump With Electrohydrodynamic Enhancement for High Heat Flux Cooling
,”
IEEE Trans. Adv. Packag.
,
28
(
2
), pp.
216
230
. 10.1109/TADVP.2005.847430
8.
Chandratilleke
,
T. T.
,
Jagannatha
,
D.
, and
Narayanaswamy
,
R.
,
2010
, “
Heat Transfer Enhancement in Microchannels With Cross-Flow Synthetic Jets
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
504
513
. 10.1016/j.ijthermalsci.2009.09.004
9.
Go
,
J. S.
,
2003
, “
Design of a Microfin Array Heat Sink Using Flow-Induced Vibration to Enhance the Heat Transfer in the Laminar Flow Regime
,”
Sens. Actuators, A
,
105
(
2
), pp.
201
210
. 10.1016/S0924-4247(03)00101-8
10.
Wang
,
Y.
, and
Peles
,
Y.
,
2014
, “
An Experimental Study of Passive and Active Heat Transfer Enhancement in Microchannels
,”
ASME J. Heat Transfer
,
136
(
3
), p.
031901
. 10.1115/1.4025558
11.
Persoons
,
T.
,
Saenen
,
T.
,
Van Oevelen
,
T.
, and
Baelmans
,
M.
,
2012
, “
Effect of Flow Pulsation on the Heat Transfer Performance of a Minichannel Heat Sink
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091702
. 10.1115/1.4006485
12.
Evans
,
B. A.
,
Shields
,
A. R.
,
Carroll
,
R. L.
,
Washburn
,
S.
,
Falvo
,
M. R.
, and
Superfine
,
R.
,
2007
, “
Magnetically Actuated Nanorod Arrays as Biomimetic Cilia
,”
Nano Lett.
,
7
(
5
), pp.
1428
1434
. 10.1021/nl070190c
13.
Hussong
,
J.
,
Schorr
,
N.
,
Belardi
,
J.
,
Prucker
,
O.
,
Ruhe
,
J.
, and
Westerweel
,
J.
,
2011
, “
Experimental Investigation of the Flow Induced by Artificial Cilia
,”
Lab Chip
,
11
(
12
), pp.
2017
2022
. 10.1039/c0lc00722f
14.
Den Toonder
,
J. M. J.
,
Bos
,
F.
,
Broer
,
D.
,
Filippini
,
L.
,
Gillies
,
M.
,
de Goede
,
J.
,
Mol
,
T.
,
Reijme
,
M.
,
Talen
,
W.
,
Wilderbeek
,
H.
,
Khatavkar
,
V.
, and
Anderson
,
P.
,
2008
, “
Artificial Cilia for Active Micro-Fluidic Mixing
,”
Lab Chip
,
8
(
4
), pp.
533
541
. 10.1039/b717681c
15.
Den Toonder
,
J. M. J.
, and
Onck
,
P. R.
,
2013
,
Artificial Cilia
,
Royal Society of Chemistry
,
Cambridge, UK
.
16.
Oh
,
K.
,
Chung
,
J.
,
Devasia
,
S.
, and
Riley
,
J. J.
,
2009
, “
Bio-Mimetic Silicone Cilia for Microfluidic Manipulation
,”
Lab Chip
,
9
(
11
), pp.
1561
1566
. 10.1039/b817409a
17.
Kim
,
Y. W.
, and
Netz
,
R. R.
,
2006
, “
Pumping Fluids With Periodically Beating Grafted Elastic Filaments
,”
Phys. Rev. Lett.
,
96
(
15
), p.
158101
. 10.1103/PhysRevLett.96.158101
18.
Gauger
,
E. M.
,
Downton
,
M. T.
, and
Stark
,
H.
,
2009
, “
Fluid Transport at Low Reynolds Number With Magnetically Actuated Artificial Cilia
,”
Eur. Phys. J. E
,
28
(
2
), pp.
231
242
. 10.1140/epje/i2008-10388-1
19.
Khaderi
,
S. N.
,
Baltussen
,
M. G. H. M.
,
Anderson
,
P. D.
,
Ioan
,
D.
,
Den Toonder
,
J. M. J.
, and
Onck
,
P. R.
,
2009
, “
Nature-Inspired Microfluidic Propulsion Using Magnetic Actuation
,”
Phys. Rev. E
,
79
(
4
), p.
046304
. 10.1103/PhysRevE.79.046304
20.
Khaderi
,
S. N.
,
Craus
,
C. B.
,
Hussong
,
J.
,
Schorr
,
N.
,
Belardi
,
J.
,
Westerweel
,
J.
,
Prucker
,
O.
,
Ruhe
,
J.
,
Den Toonder
,
J. M. J.
, and
Onck
,
P. R.
,
2011
, “
Magnetically-Actuated Artificial Cilia for Microfluidic Propulsion
,”
Lab Chip
,
11
(
12
), pp.
2002
2010
. 10.1039/c0lc00411a
21.
Khaderi
,
S. N.
,
Den Toonder
,
J. M. J.
, and
Onck
,
P. R.
,
2012
, “
Magnetically Actuated Artificial Cilia: The Effect of Fluid Inertia
,”
Langmuir
,
28
(
20
), pp.
7921
7937
. 10.1021/la300169f
22.
Khatavkar
,
V.
,
Anderson
,
P. D.
,
den Toonder
,
J. M. J.
, and
Meijer
,
H. E. H.
,
2007
, “
Active Micromixer Based on Artificial Cilia
,”
Phys. Fluids
,
19
(
8
), p.
083605
. 10.1063/1.2762206
23.
Mills
,
Z. G.
,
Aziz
,
B.
, and
Alexeev
,
A.
,
2012
, “
Beating Synthetic Cilia Enhance Heat Transport in Microfluidic Channels
,”
Soft Matter
,
8
(
45
), pp.
11508
11513
. 10.1039/c2sm26919h
24.
Fahrni
,
F.
,
Prins
,
M. W. J.
, and
van Ijzendoorn
,
L. J.
,
2009
, “
Micro-Fluidic Actuation Using Magnetic Artificial Cilia
,”
Lab Chip
,
9
(
23
), pp.
3413
3421
. 10.1039/b908578e
25.
Khaderi
,
S. N.
,
Hussong
,
J.
,
Westerweel
,
J.
,
Den Toonder
,
J.
, and
Onck
,
P. R.
,
2013
, “
Fluid Propulsion Using Magnetically-Actuated Artificial Cilia—Experiments and Simulations
,”
RSC Adv.
,
3
(
31
), pp.
12735
12742
. 10.1039/c3ra42068j
26.
Jog
,
C. S.
,
2011
, “
A Finite Element Method for Compressible Viscous Fluid Flows
,”
Int. J. Numer. Methods Fluids
,
66
(
7
), pp.
852
874
. 10.1002/fld.2287
27.
Van Loon
,
R.
,
Anderson
,
P. D.
,
De Hart
,
J.
, and
Baaijens
,
F. P. T.
,
2004
, “
A Combined Fictitious Domain/Adaptive Meshing Method for Fluid–Structure Interaction in Heart Valves
,”
Int. J. Numer. Methods Fluids
,
46
(
5
), pp.
533
544
. 10.1002/fld.775
28.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
. 10.1016/0021-9991(82)90058-4
You do not currently have access to this content.