Abstract

The performances of the supercritical carbon dioxide (sCO2) Brayton cycle with the recuperator were investigated by the simulation method. Evaluation criteria were proposed for system performance optimization. The calculation and analysis of the system thermal efficiency and the length of the cooler were performed. The effects of the inlet and outlet pressure of the expander, the heat transfer coefficient and the logarithmic mean temperature difference (LMTD) on the system thermal efficiency and the length of the cooler were investigated. The system thermal efficiency has a peak value with the increase of the expander inlet pressure. The peak value varies from 45% to 45.4% with different expander outlet pressures. The average heat transfer coefficient and the length of the cooler decrease with the increase of the inlet pressure, but the LMTD is on the contrary. When the expander inlet pressure is in the low-pressure stage (22–26 MPa), the thermal efficiency of the lower outlet pressure (8 MPa) is higher, which ranges from 44.3% to 45.4%. However, the length of the cooler is also larger (6.7–10.9 m). As the expander inlet pressure rises to the high-pressure stage (26–30 MPa), the higher outlet pressure (9.5 MPa) has a greater advantage in the thermal efficiency, and the range of efficiency is 44.7–45%. Similarly, the length of the cooler is the largest (4.5–8 m). Therefore, both the thermal efficiency and the length of the cooler should be fully considered in the design of the system operating conditions.

References

1.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energy
,
111
(
4
), pp.
957
970
. 10.1016/j.apenergy.2013.06.020
2.
Wang
,
X. D.
,
Zhao
,
L.
, and
Wang
,
J. L.
,
2011
, “
Experimental Investigation on the Low-Temperature Solar Rankine Cycle System Using R245fa
,”
Energy Convers. Manag.
,
52
(
2
), pp.
946
952
. 10.1016/j.enconman.2010.08.022
3.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renew. Sust. Energy Rev.
,
14
(
9
), pp.
3059
3067
. 10.1016/j.rser.2010.07.006
4.
Zhang
,
S.
,
Wang
,
H.
, and
Guo
,
T.
,
2011
, “
Performance Comparison and Parametric Optimization of Subcritical Organic Rankine Cycle (ORC) and Transcritical Power Cycle System for Low-Temperature Geothermal Power Generation
,”
Appl. Energy
,
88
(
8
), pp.
2740
2754
. 10.1016/j.apenergy.2011.02.034
5.
Sun
,
F.
, and
Ikegami
,
Y.
,
2010
, “
Direct Method to Maximize Net Power Output of Rankine Cycle in Low- Grade Thermal Energy Conversion
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
2
), p.
021003
. 10.1115/1.4002564
6.
Kaneko
,
A.
,
Katsuta
,
M.
,
Oshiro
,
T.
,
Bae
,
S.
,
Komatsu
,
S.
, and
Ohno
,
Y.
,
2011
, “
The Development of Performance Prediction Methods for an Automotive CO2 A/C Cycle
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021004
. 10.1115/1.4003887
7.
Feng
,
K.
, and
Cai
,
J. X.
,
2017
, “
The Research and Development of CO2 Refrigeration Technology
,”
Energy Conserv.
,
423
(
12
), pp.
10
16
.
8.
Ishiyama
,
S.
,
Muto
,
Y.
,
Kato
,
Y.
,
Nishio
,
S.
,
Hayashi
,
T.
, and
Nomoto
,
Y.
,
2008
, “
Study of Steam, Helium and Supercritical CO2 Turbine Power Generations in Prototype Fusion Power Reactor
,”
Prog. Nucl. Energy
,
50
(
2–6
), pp.
325
332
. 10.1016/j.pnucene.2007.11.078
9.
Linares
,
J. I.
,
Herranz
,
L. E.
,
Moratilla
,
B. Y.
, and
Serrano
,
I. P.
,
2011
, “
Power Conversion Systems Based on Brayton Cycles for Fusion Reactors
,”
Fusion Eng. Des.
,
86
(
9–11
), pp.
2735
2738
. 10.1016/j.fusengdes.2011.02.010
10.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martinez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
. 10.1016/j.apenergy.2017.02.048
11.
Mecheri
,
M.
, and
Le Moullec
,
Y.
,
2016
, “
Supercritical CO2 Brayton Cycles for Coal-Fired Power Plants
,”
Energy
,
103
, pp.
758
771
. 10.1016/j.energy.2016.02.111
12.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng. Trans.
,
135
(
4
), p.
041007
. 10.1115/1.4024030
13.
Chacartegui
,
R.
,
Munoz de Escalona
,
J. M.
,
Sanchez
,
D.
,
Monje
,
B.
, and
Sanchez
,
T.
,
2011
, “
Alternative Cycles Based on Carbon Dioxide for Central Receiver Solar Power Plants
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
872
879
. 10.1016/j.applthermaleng.2010.11.008
14.
Neises
,
T.
, and
Turchi
,
C.
,
2014
, “
A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations With an Emphasis on CSP Applications
,”
Energy Procedia
,
49
, pp.
1187
1196
. 10.1016/j.egypro.2014.03.128
15.
Besarati
,
S. M.
, and
Goswami
,
D. Y.
,
2014
, “
Analysis of Advanced Supercritical Carbon Dioxide Power Cycles With a Bottoming Cycle for Concentrating Solar Power Applications
,”
ASME J. Sol. Energy Eng. Trans.
,
136
(
1
), p.
010904
. 10.1115/1.4025700
16.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors
,”
Nucl. Technol.
,
154
(
3
), pp.
265
282
. 10.13182/NT154-265
17.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol.
,
154
(
3
), pp.
283
301
. 10.13182/NT06-A3734
18.
Zhang
,
Y.
,
Li
,
H.
, and
Han
,
W.
,
2018
, “
Improved Design of Supercritical CO2 Brayton Cycle for Coal-Fired Power Plant
,”
Energy
,
155
, pp.
1
14
. 10.1016/j.energy.2018.05.003s
19.
Atif
,
M.
, and
Al-Sulaiman
,
F. A.
,
2014
, “
Performance Analysis of Supercritical CO2 Brayton Cycles Integrated With Solar Central Receiver System
,”
5th International Renewable Energy Congress (IREC), Hammamet
,
TUNISIA
,
Mar. 25–27
,
IEEE
, pp.
1
6
.
20.
Sarkar
,
J.
,
2009
, “
Second Law Analysis of Supercritical CO2 Recompression Brayton Cycle
,”
Energy
,
34
(
9
), pp.
1172
1178
. 10.1016/j.energy.2009.04.030
21.
Zheng
,
K.
,
2017
, “
Efficiency Analysis for Supercritical Carbon Dioxide Brayton Cycles
,”
Power Equip.
,
31
(
5
), pp.
305
309
.
22.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
,
2013
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties Database (REFPROP), version 9.1, Standard Refrence Data, National Institute of Standards and Technology
,
Gaitherburg, MD
.
23.
Abid
,
M.
,
Khan
,
M. S.
, and
Ratlamwala
,
T. A. H.
,
2020
, “
Comparative Energy, Exergy and Exergo-Economic Analysis of Solar Driven Supercritical Carbon Dioxide Power and Hydrogen Generation Cycle
,”
Int. J. Hydrog. Energy
,
45
(
9
), pp.
5653
5667
. 10.1016/j.ijhydene.2019.06.103
24.
Wang
,
S.-S.
,
Wu
,
C.
, and
Li
,
J.
,
2018
, “
Exergoeconomic Analysis and Optimization of Single-Pressure Single-Stage and Multi-Stage CO2 Transcritical Power Cycles for Engine Waste Heat Recovery: A Comparative Study
,”
Energy
,
142
, pp.
559
577
. 10.1016/j.energy.2017.10.055
25.
Akbari
,
A. D.
, and
Mahmoudi
,
S. M. S.
,
2014
, “
Thermoeconomic Analysis & Optimization of the Combined Supercritical CO2 (Carbon Dioxide) Recompression Brayton/Organic Rankine Cycle
,”
Energy
,
78
, pp.
501
512
. 10.1016/j.energy.2014.10.037
26.
Ma
,
Y.
,
Liu
,
M.
,
Yan
,
J.
, and
Liu
,
J.
,
2017
, “
Thermodynamic Study of Main Compression Intercooling Effects on Supercritical CO2 Recompression Brayton Cycle
,”
Energy
,
140
, pp.
746
756
. 10.1016/j.energy.2017.08.027
27.
Chen
,
Y.
,
Wang
,
M.
,
Liso
,
V.
,
Samsatli
,
S.
,
Samsatli
,
N. J.
,
Jing
,
R.
,
Chen
,
J.
,
Li
,
N.
, and
Zhao
,
Y.
,
2019
, “
Parametric Analysis and Optimization for Exergoeconomic Performance of a Combined System Based on Solid Oxide Fuel Cell-Gas Turbine and Supercritical Carbon Dioxide Brayton Cycle
,”
Energy Convers. Manag.
,
186
, pp.
66
81
. 10.1016/j.enconman.2019.02.036
28.
Zhang
,
G.-W.
,
Hu
,
P.
,
Chen
,
L.-X.
, and
Liu
,
M.-H.
,
2018
, “
Experimental and Simulation Investigation on Heat Transfer Characteristics of In-Tube Supercritical CO2 Cooling Flow
,”
Appl. Therm. Eng.
,
143
, pp.
1101
1113
. 10.1016/j.applthermaleng.2018.07.108
You do not currently have access to this content.