Abstract

The open volumetric air receiver (OVAR)-based central solar thermal systems provide air at a temperature > 1000 K. Such a receiver is comprised of porous absorbers, which are exposed to a high heat-flux > 800 Suns (1 Sun = 1 kW/m2). A reliable assessment of heat transfer in an OVAR is necessary to operate such a receiver under transient conditions. Based on a literature review, the need for developing a comprehensive, unsteady, heat transfer model is realized. In this paper, a seven-equations based, one-dimensional, zonal model is deduced. This includes heat transfer in porous absorber, primary-air, return-air, receiver casing, and their detailed interaction. The zonal model is validated with an inhouse experiment showing its predictive capability, for unsteady and steady conditions, within the reported uncertainty of ±7%. The validated model is used for investigating the effect of operating conditions and absorber geometry on the thermal performance of an absorber. Some of the salient observations are (a) the maximum absorber porosity of 70–90% may be preferred for non-volumetric and volumetric-heating conditions, (b) the minimum air-return ratio should be 0.7, and (c) the smallest gap to absorber-length ratio of 0.2 should suffice. Finally, suggestions are provided for extending the model.

References

References
1.
Bijarniya
,
J. P.
,
Sudhakar
,
K.
, and
Baredar
,
P.
,
2016
, “
Concentrated Solar Power Technology in India: a Review
,”
Renewable Sustainable Energy Rev.
,
63
, pp.
593
603
. 10.1016/j.rser.2016.05.064
2.
Bishoyi
,
D.
, and
Sudhakar
,
K.
,
2017
, “
Modeling and Performance Simulation of 100 MW PTC Based Solar Thermal Power Plant in Udaipur India
,”
Case Stud. Therm. Eng.
,
10
, pp.
216
226
. 10.1016/j.csite.2017.05.005
3.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2013
, “
A Review of Studies on Central Receiver Solar Thermal Power Plants
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
12
39
. 10.1016/j.rser.2013.02.017
4.
Sharma
,
P.
,
Sarma
,
R.
,
Chandra
,
L.
,
Shekhar
,
R.
, and
Ghoshdastidar
,
P. S.
,
2015
, “
Solar Tower Based Aluminum Heat Treatment System: Part I. Design and Evaluation of an Open Volumetric air Receiver
,”
Sol. Energy
,
111
, pp.
135
150
. 10.1016/j.solener.2014.10.035
5.
Sharma
,
P.
,
Sarma
,
R.
,
Chandra
,
L.
,
Shekhar
,
R.
, and
Ghoshdastidar
,
P. S.
,
2015
, “
On the Design and Evaluation of Open Volumetric Air Receiver for Process Heat Applications
,”
Sol. Energy
,
121
, pp.
41
55
. 10.1016/j.solener.2015.05.027
6.
Reuter
,
H. C.
,
2018
, “
A Review of Performance Modelling Studies Associated With Open Volumetric Receiver CSP Plant Technology
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
3848
3862
. 10.1016/j.rser.2017.10.086
7.
Gomez-Garcia
,
F.
,
González-Aguilar
,
J.
,
Olalde
,
G.
, and
Romero
,
M.
,
2016
, “
Thermal and Hydrodynamic Behavior of Ceramic Volumetric Absorbers for Central Receiver Solar Power Plants: A Review
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
648
658
. 10.1016/j.rser.2015.12.106
8.
Avila-Marin
,
A. L.
,
Alvarez-Lara
,
M.
, and
Fernandez-Reche
,
J.
,
2014
, “
Experimental Results of Gradual Porosity Wire Mesh Absorber for Volumetric Receivers
,”
Energy Procedia
,
49
, pp.
275
283
. 10.1016/j.egypro.2014.03.030
9.
Pitz-Paal
,
R.
,
Hoffschmidt
,
B.
,
Böhmer
,
M.
, and
Becker
,
M.
,
1997
, “
Experimental and Numerical Evaluation of the Performance and Flow Stability of Different Types of Open Volumetric Absorbers Under non-Homogeneous Irradiation
,”
Sol. Energy
,
60
(
3–4
), pp.
135
150
. 10.1016/S0038-092X(97)00007-8
10.
Marcos
,
M. J.
,
Romero
,
M.
, and
Palero
,
S.
,
2004
, “
Analysis of Air Return Alternatives for CRS-Type Open Volumetric Receiver
,”
Energy
,
29
(
5–6
), pp.
677
686
. 10.1016/S0360-5442(03)00176-2
11.
Bai
,
F.
,
2010
, “
One Dimensional Thermal Analysis of Silicon Carbide Ceramic Foam Used for Solar Air Receiver
,”
Int. J. Therm. Sci.
,
49
(
12
), pp.
2400
2404
. 10.1016/j.ijthermalsci.2010.08.010
12.
Ahlbrink
,
N.
,
Andersson
,
J.
,
Diehl
,
M.
, and
Pitz-Paal
,
R.
,
2010
, “
Optimized Operation of an Open Volumetric Air Receiver
,”
Proceedings of the Solar-PACES 2010 Conference
,
Perpignan, France
,
Sept. 21–24
, Sept. 21–24.
13.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
,
2011
, “
Coupled Radiation and Flow Modeling in Ceramic Foam Volumetric Solar Air Receivers
,”
Sol. Energy
,
85
(
9
), pp.
2374
2385
. 10.1016/j.solener.2011.06.030
14.
Michailidis
,
N.
,
Stergioudi
,
F.
,
Omar
,
H.
,
Missirlis
,
D.
,
Vlahostergios
,
Z.
,
Tsipas
,
S.
,
Albanakis
,
C.
, and
Granier
,
B.
,
2013
, “
Flow, Thermal and Structural Application of Ni-Foam as Volumetric Solar Receiver
,”
Sol. Energy Mater. Sol. Cells
,
109
, pp.
185
191
. 10.1016/j.solmat.2012.10.021
15.
Smirnova
,
O.
,
Bleider
,
G.
,
Jakob
,
C.
,
Schöllgen
,
D.
,
Fend
,
T.
, and
Schwarzbözl
,
P.
,
2011
, “
Numerical Investigation of Advanced Volumetric Receiver Materials
,”
Proceedings of the 17th SolarPACES Conference
,
Granada, Spain
, pp.
1
8
.
16.
Fend
,
T.
,
Schwarzbözl
,
P.
,
Smirnova
,
O.
,
Schöllgen
,
D.
, and
Jakob
,
C.
,
2013
, “
Numerical Investigation of Flow and Heat Transfer in a Volumetric Solar Receiver
,”
Renewable Energy
,
60
, pp.
655
661
. 10.1016/j.renene.2013.06.001
17.
Achenbach
,
T.
,
Geimer
,
K.
,
Göttsche
,
J.
,
Hoffschmidt
,
B.
,
Lynen
,
A.
, and
Bauer
,
J.
,
2011
, “
Simulation and Flow Measurements of Volumetric High Temperature Absorbers for Solar Tower Power Plants
,”
Proceedings of SolarPACES2011: Concentrating Solar Power and Chemical Energy Systems
,
Granada, Spain
,
Sept. 20–23
,
1-CD-ROM
.
18.
Schwarzbözl
,
P.
,
Hack
,
U.
, and
Ebert
,
M.
,
2011
, “
Improvement of Ceramic Absorbers Materials for Open Volumetric Receivers
,”
Proceedings of the 17th SolarPACES Conference
,
Granada, Spain
.
19.
Lee
,
H. J.
,
Kim
,
J. K.
,
Lee
,
S. N.
, and
Kang
,
Y. H.
,
2012
, “
Consistent Heat Transfer Analysis for Performance Evaluation of Multichannel Solar Absorbers
,”
Sol. Energy
,
86
(
5
), pp.
1576
1585
. 10.1016/j.solener.2012.02.020
20.
Roldán
,
M. I.
,
Smirnova
,
O.
,
Fend
,
T.
,
Casas
,
J. L.
, and
Zarza
,
E.
,
2014
, “
Thermal Analysis and Design of a Volumetric Solar Absorber Depending on the Porosity
,”
Renewable Energy
,
62
, pp.
116
128
. 10.1016/j.renene.2013.06.043
21.
Gomez-Garcia
,
F.
,
Gonzalez-Aguilar
,
J.
,
Tamayo-Pacheco
,
S.
,
Olalde
,
G.
, and
Romero
,
M.
,
2015
, “
Numerical Analysis of Radiation Propagation in a Multi-Layer Volumetric Solar Absorber Composed of a Stack of Square Grids
,”
Sol. Energy
,
121
, pp.
94
102
. 10.1016/j.solener.2015.04.047
22.
Roldán
,
M. I.
,
Avila-Marin
,
A.
,
Alvarez-Lara
,
M.
, and
Fernandez-Reche
,
J.
,
2015
, “
Experimental and Numerical Characterization of Ceramic and Metallic Absorbers Under Lab-Scale Conditions
,”
Energy Procedia
,
69
, pp.
523
531
. 10.1016/j.egypro.2015.03.061
23.
Teng
,
L.
, and
Xuan
,
Y.
,
2018
, “
Thermal and Hydrodynamic Performance of a Novel Volumetric Solar Receiver
,”
Sol. Energy
,
163
, pp.
177
188
. 10.1016/j.solener.2018.01.087
24.
Abuseada
,
M.
,
Ozalp
,
N.
, and
Ophoff
,
C.
,
2019
, “
Numerical and Experimental Investigation of Heat Transfer in a Solar Receiver With a Variable Aperture
,”
Int. J. Heat Mass Transfer
,
128
, pp.
125
135
. 10.1016/j.ijheatmasstransfer.2018.08.121
25.
Wang
,
F.
,
Shuai
,
Y.
,
Tan
,
H.
, and
Yu
,
C.
,
2013
, “
Thermal-performance Analysis of Porous Media Receiver With Concentrated Solar Irradiation
,”
Int. J. Heat Mass Transfer
,
62
, pp.
247
254
. 10.1016/j.ijheatmasstransfer.2013.03.003
26.
Wu
,
Z.
, and
Wang
,
Z.
,
2013
, “
Fully Coupled Transient Modeling of Ceramic Foam Volumetric Solar Air Receiver
,”
Sol. Energy
,
89
, pp.
122
133
. 10.1016/j.solener.2012.12.016
27.
Kribus
,
A.
,
Gray
,
Y.
,
Grijnevich
,
M.
,
Mittelman
,
G.
,
Mey-Cloutier
,
S.
, and
Caliot
,
C.
,
2014
, “
The Promise and Challenge of Solar Volumetric Absorbers
,”
Sol. Energy
,
110
, pp.
463
481
. 10.1016/j.solener.2014.09.035
28.
Kribus
,
A.
,
Grijnevich
,
M.
,
Gray
,
Y.
, and
Caliot
,
C.
,
2014
, “
Parametric Study of Volumetric Absorber Performance
,”
Energy Procedia
,
49
, pp.
408
417
. 10.1016/j.egypro.2014.03.044
29.
Reddy
,
K. S.
, and
Nataraj
,
S.
,
2019
, “
Thermal Analysis of Porous Volumetric Receivers of Concentrated Solar Dish and Tower Systems
,”
Renewable Energy
,
132
, pp.
786
797
. 10.1016/j.renene.2018.08.030
30.
Barreto
,
G.
,
Canhoto
,
P.
, and
Collares-Pereira
,
M.
,
2018
, “
Three-Dimensional Modelling and Analysis of Solar-Radiation Absorption in Porous Volumetric Receivers
,”
Appl. Energy
,
215
, pp.
602
614
. 10.1016/j.apenergy.2018.02.065
31.
Zhu
,
Q.
, and
Xuan
,
Y.
,
2018
, “
Performance Analysis of a Volumetric Receiver Composed of Packed Shaped Particles With Spectrally Dependent Emissivity
,”
Int. J. Heat Mass Transfer
,
122
, pp.
421
431
. 10.1016/j.ijheatmasstransfer.2018.02.006
32.
Cagnoli
,
M.
,
Savoldi
,
L.
,
Zanino
,
R.
, and
Zaversky
,
F.
,
2017
, “
Coupled Optical and CFD Parametric Analysis of an Open Volumetric Air Receiver of Honeycomb Type for Central Tower CSP Plants
,”
Sol. Energy
,
155
, pp.
523
536
. 10.1016/j.solener.2017.06.038
33.
Philip
,
J.
,
2002
,
SFPE Handbook of Fire Protection Engineering
,
Society of Fire Protection Engineers
,
Massachusetts
.
34.
Subbarao
,
P.M.
,
2015
, “
Thermal Development of Internal Flows
,” http://web.iitd.ac.in/~pmvs/courses/mel242/mel242-27.ppt, Accessed July 3, 2019.
35.
Sarma
,
R.
,
2013
, “
Design and Analysis of Recirculating Air System in an Open Volumetric Air Receiver
,”
Master of Technology dissertation
,
Indian Institute of Technology Jodhpur
,
Jodhpur, Rajasthan, India
.
36.
Kays
,
W. M.
, and
Perkins
,
H. C.
,
1985
, “Forced Convection, Internal Flow in Ducts,”
Handbook of Heat Transfer Fundamentals
,
W. M.
Rohsenow
,
J. P.
Hartnett
, and
E. N.
Ganic
, eds.,
McGraw-Hill Book Co.
,
New York
, pp.
5.1
5.135
.
37.
Žukauskas
,
A.
,
1972
, “Heat Transfer From Tubes in Crossflow,”
Advances in Heat Transfer
,
J. P.
Hartnett
, and
T. F.
Irvine
, Jr.
, eds., Vol.
8
,
Elsevier
,
New York
, pp.
93
160
.
38.
Grimson
,
E. D.
,
1937
, “
Correlation and Utilization of New Data on Flow Resistance and Heat Transfer Cross-Flow of Gases Over Tube Banks
,”
Trans. ASME
,
59
, pp.
583
594
.
39.
Luque
,
S.
,
Menéndez
,
G.
,
Roccabruna
,
M.
,
González-Aguilar
,
J.
,
Crema
,
L.
, and
Romero
,
M.
,
2018
, “
Exploiting Volumetric Effects in Novel Additively Manufactured Open Solar Receivers
,”
Sol. Energy
,
174
, pp.
342
351
. 10.1016/j.solener.2018.09.030
You do not currently have access to this content.