Abstract

In the current investigation, by using a very low mass flux co-axial laminar multiphase fluid jet, enhancement in heat transfer rate, uniformity in heat flux distribution, and reduction in coolant consumption rate characteristics are simultaneously tried to achieve in case of cooling from a very high initial temperature (900 °C). The information on quenching technology depicting all the above-mentioned advantages has not been reported in the literature. In the present work, kerosene–water, nanofluid (Al2O3 = 0.15%)–kerosene, and nanofluid (Al2O3 = 0.15%)–polyethylene glycol combinations were used for co-axial cooling experimentation. From the heat transfer analysis, it is observed that nanofluid (Al2O3 = 0.15%) and kerosene combination produces maximum critical heat flux due to the alteration of thermophysical and interfacial properties, which enhance the driving force and flow behavior defining momentum and thermal diffusivities in the favorable direction of heat transfer, respectively. In addition to the above, the comparative study ensures a significant reduction in coolant consumption and augmentation in uniformity in heat flux distribution.

References

References
1.
Bin
,
H.
,
Hua
,
L. X.
,
Guo-Dong
,
W.
, and
Guang-Fu
,
S.
,
2005
, “
Development of Cooling Process Technique in Hot Strip Mill
,”
J. Iron Steel Res. Int.
,
12
(
1
), pp.
12
16
.
2.
Cho
,
M. J.
,
Thomas
,
B. G.
, and
Lee
,
P. J.
,
2008
, “
Three Dimensional Numerical Study of Impinging Water Jet in Runout Table Cooling Processes
,”
Metall. Mater. Trans.
,
39
(
4
), pp.
593
602
.
3.
Lucas
,
A.
,
Simon
,
P.
,
Bourdon
,
G.
,
Herman
,
J. C.
,
Riche
,
P.
,
Neutjens
,
J.
, and
Harlet
,
P.
,
2004
, “
Metallurgical Aspect of Ultra-Fast Cooling in Front of Down-Coiler
,”
Steel Res. Int.
,
75
(
2
), pp.
139
146
. 10.1002/srin.200405939
4.
Walker
,
J.
,
1992
, “
Boiling and Leidenfrost Effect
,”
Am. J. Phys.
,
60
(
7
), pp.
593
599
. 10.1119/1.17111
5.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
1999
, “
The Leidenfrost Point: Experimental Study and Assessment of Existing Models
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
894
903
. 10.1115/1.2826080
6.
Mills
,
A. A.
, and
Sharrock
,
N. F.
,
1986
, “
Rate of Evaporation of n-Alcohols From a Hot Surface: Nukiyama and Leidenfrost Temperatures
,”
Eur. J. Phys.
,
7
(
1
), pp.
52
54
. 10.1088/0143-0807/7/1/010
7.
Mohapatra
,
S. S.
,
Ravikumar
,
S. V.
,
Verma
,
A.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Experimental Investigation of Effect of a Surfactant to Increase Cooling of Hot Steel Plates by a Water Jet
,”
ASME J. Heat Transfer
,
135
(
3
), p.
032101
. 10.1115/1.4007878
8.
Ravikumar
,
S. V.
,
Mohapatra
,
S. S.
,
Jha
,
J. M.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2014
, “
Experimental Investigation of Effect of Different Types of Surfactants and Jet Height on Cooling of a Hot Steel Plate
,”
ASME J. Heat Transfer
,
136
(
7
), p.
072102
. 10.1115/1.4027182
9.
Zumbrunnen
,
D. A.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1989
, “
Convective Heat Transfer Distribution on a Plate Cooled by Planar Water Jets
,”
ASME J. Heat Transfer
,
111
(
4
), pp.
889
896
. 10.1115/1.3250802
10.
Xu
,
F.
, and
Mohamed
,
S. G.
,
2006
, “
Heat Transfer Behavior in the Impingement Zone Under Circular Water Jet
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
3785
3799
. 10.1016/j.ijheatmasstransfer.2006.03.034
11.
Liu
,
X.
,
Lienhard
,
X.
, and
Lombara
,
J. S.
,
1991
, “
Convective Heat Transfer by Impingement of Circular Liquid Jets
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
571
582
. 10.1115/1.2910604
12.
Lee
,
P.
,
Choi
,
H.
, and
Lee
,
S.
,
2004
, “
The Effect of Nozzle Height on Cooling Heat Transfer Form a Hot Steel Plate by an Impinging Liquid Jet
,”
ISIJ Int.
,
44
(
4
), pp.
704
709
. 10.2355/isijinternational.44.704
13.
Woodfield
,
P. L.
,
Mozumder
,
A. K.
, and
Monde
,
M.
,
2009
, “
On the Size of the Boiling Region in Jet Impingement Quenching
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
460
465
. 10.1016/j.ijheatmasstransfer.2008.05.024
14.
Ravikumar
,
S. V.
,
Jhaa
,
M.
,
Sarkar
,
I.
,
Mohapatra
,
S. S.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Achievement of Ultrafast Cooling Rate in a Hot Steel Plate by Air-Atomized Spray With Different Surfactant Additives
,”
Exp. Therm. Fluid. Sci.
,
50
(
10
), pp.
79
89
. 10.1016/j.expthermflusci.2013.05.007
15.
Bhatt
,
N. H.
,
Chouhan
,
D.
,
Pati
,
A. R.
,
Varshney
,
P.
,
Lily
,
D.
,
Kumar
,
A.
,
Munshi
,
B.
,
Behera
,
A.
, and
Mohapatra
,
S. S.
,
2017
, “
Role of Water Temperature in Case of High Mass Flux Spray Cooling of a Hot AISI 304 Steel Plate at Different Initial Surface Temperatures
,”
Exp. Heat Transfer
,
30
(
5
), pp.
369
392
. 10.1080/08916152.2016.1269138
16.
Graham
,
K. M.
, and
Ramadhyani
,
S.
,
2007
, “
Experimental and Theoretical Studies of Mist Jet Impingement Cooling
,”
ASME J. Heat Transfer
,
118
(
2
), pp.
343
349
. 10.1115/1.2825850
17.
Li
,
D. I.
, and
Wells
,
M. A.
,
2005
, “
Effect of Subsurface Thermocouple Installation on the Discrepancy of the Measured Thermal History and Predicted Surface Heat Flux During a Quench Operation
,”
Metall. Mater. Trans. B
,
36
(
3
), pp.
343
354
. 10.1007/s11663-005-0064-6
18.
Pati
,
A. R.
,
Bhatt
,
N. H.
,
Das
,
L.
,
Teja
,
S.
,
Nayak
,
S.
,
Kumar
,
A.
,
Sahoo
,
A.
,
Munshi
,
B.
,
Behera
,
A.
,
Sutar
,
H.
, and
Mohapatra
,
S. S.
,
2019
, “
The Discrepancy in the Prediction of Surface Temperatures by Inverse Heat Conduction Models for Different Quenching Processes From Very High Initial Surface Temperature
,”
Inverse Probl. Eng. Sci.
,
27
(
6
), pp.
808
835
. 10.1080/17415977.2018.1501369
19.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
2003
,
INTEMP—Inverse Heat Transfer Analysis User’s Manual
,
Trucomp Co
,
Fountain Valley, Canada
, pp.
1
47
.
20.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
1994
, “
Optimal Regularization of Inverse Heat Conduction Problem Using the L-Curve
,”
Int. J. Numer. Methods Heat Fluid Flow
,
4
(
5
), pp.
47
452
. 10.1108/EUM0000000004048
21.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
1997
,
Practical Inverse Analysis in Engineering
,
CRC Press, LLC
,
Boca Raton, FL
.
22.
Busby
,
H. R.
, and
Trujillo
,
D. M.
,
1985
, “
Numerical Solution to a Two-Dimensional Inverse Heat Conduction Problem
,”
Int. J. Numerical Methods Eng.
,
21
(
2
), pp.
349
359
. 10.1002/nme.1620210211
23.
Guodong
,
X.
,
Huanming
,
J.
,
Ran
,
L.
, and
Yuling
,
Z.
,
2014
, “
Effects of Surfactant on the Stability and Thermal Conductivity of Al2O3/De-Ionized Water Nanofluids
,”
Int. J. Therm. Sci.
,
84
(
10
), pp.
118
124
. 10.1016/j.ijthermalsci.2014.05.004
24.
Saeid
,
V.
,
2015
, “
Nanofluid Pool Boiling Heat Transfer Phenomenon
,”
Powder Technol.
,
277
(
6
), pp.
181
192
. 10.1016/j.powtec.2015.02.040
25.
Saeid
,
V.
, and
Theodorian
,
B. T.
,
2014
, “
Role of Nanoparticles on Nanofluid Boiling Phenomenon Nanoparticle Deposition
,”
Chem. Eng. Res. Des.
,
92
(
5
), pp.
842
856
. 10.1016/j.cherd.2013.08.007
26.
Pati
,
A. R.
,
Lily, Munshi
,
B.
,
Behera
,
A.
, and
Mohapatra
,
S. S.
,
2017
, “
Enhancement of Heat Removal Rate of High Mass Flux Spray Cooling by Seawater
,”
Exp. Therm. Fluid Sci.
,
89
(
12
), pp.
19
40
. 10.1016/j.expthermflusci.2017.07.012
You do not currently have access to this content.