Abstract

Liquid water–urea mixtures are used in diesel vehicles for exhaust after treatment. In cold weather, the entire liquid may freeze and the process may span over a day. Traditional computational fluid dynamics and heat transfer (CFD/CHT) methodologies are impractical for modeling such freezing processes because of restrictions in the time-step size—typically milliseconds—posed by numerical stability and physical timescale considerations. Preliminary investigations revealed that the primary constraint for using small time-steps is the fine-scale motion generated by natural convection in both the liquid and the gas. A new model is proposed and demonstrated for efficient prediction of the propagation of the solidification front. In this model, heat transfer due to natural convection is modeled as a diffusive process analogous to how turbulent transport is modeled using an eddy diffusivity. The model enables the use of large time-steps since the fine-scale motions due to natural convection are not resolved. It was validated against experimental data for pure water, which were also collected as part of the study. Each experiment collected data at intervals of 6 s for a total duration of about 24 h. Several different tank fill levels were considered, and a good agreement with experimental data was noted, especially for shallow fill levels. Large-scale parallel three-dimensional calculations were conducted for the freezing of pure water in a few days of computational time as opposed to a year (projected) of computational time using traditional CFD/CHT models and the same computational resources.

References

References
1.
Koebel
,
M.
,
Elsener
,
M.
, and
Kleemann
,
M.
,
2000
, “
Urea-SCR: A Promising Technique to Reduce NOx Emissions From Automotive Diesel Engines
,”
Catal. Today
,
59
(
3–4
), pp.
335
345
. 10.1016/S0920-5861(00)00299-6
2.
aus der Wiesche
,
S.
,
2007
, “
Numerical Heat Transfer and Thermal Engineering of AdBlue (SCR) Tanks for Combustion Engine Emission Reduction
,”
Appl. Therm. Eng.
,
27
(
11–12
), pp.
1790
1798
. 10.1016/j.applthermaleng.2007.01.008
3.
Choi
,
B. C.
,
Kim
,
Y. K.
,
Jhung
,
W. N.
,
Lee
,
C. H.
, and
Hwang
,
C. Y.
,
2013
, “
Experimental Investigation on Melting Characteristics of Frozen Urea–Water-Solutions for a Diesel SCR de-NOx-System
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1235
1245
. 10.1016/j.applthermaleng.2012.08.008
4.
de Beeck
,
J. O.
,
Slusser
,
K.
, and
Booth
,
N.
,
2014
, “DEF Storage and Delivery System for Operation in Extreme Winter Conditions.” SAE Technical Paper No. 2014-01-1530.
5.
Minaie
,
B.
,
Stelson
,
K. A.
, and
Voller
,
V. R.
,
1991
, “
Analysis of Flow Patterns and Solidification Phenomena in the Die Casting Process
,”
ASME J. Eng. Mater. Technol.
,
113
(
3
), pp.
296
302
. 10.1115/1.2903409
6.
Im
,
I. T.
,
Kim
,
W. S.
, and
Lee
,
K. S.
,
2001
, “
A Unified Analysis of Filling and Solidification in Casting With Natural Convection
,”
Int. J. Heat Mass Transfer
,
44
(
8
), pp.
1507
1515
. 10.1016/S0017-9310(00)00197-6
7.
Boettinger
,
W. J.
,
Warren
,
J. A.
,
Beckermann
,
C.
, and
Karma
,
A.
,
2002
, “
Phase-Field Simulation of Solidification
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
163
194
. 10.1146/annurev.matsci.32.101901.155803
8.
Tay
,
N. H. S.
,
Bruno
,
F.
, and
Belusko
,
M.
,
2012
, “
Experimental Validation of a CFD Model for Tubes in a Phase Change Thermal Energy Storage System
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
574
585
. 10.1016/j.ijheatmasstransfer.2011.10.054
9.
Trp
,
A.
,
2005
, “
An Experimental and Numerical Investigation of Heat Transfer During Technical Grade Paraffin Melting and Solidification in a Shell-and-Tube Latent Thermal Energy Storage Unit
,”
Sol. Energy
,
79
(
6
), pp.
648
660
. 10.1016/j.solener.2005.03.006
10.
Al-Abidi
,
A. A.
,
Mat
,
S. B.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammed
,
A. T.
,
2013
, “
CFD Applications for Latent Heat Thermal Energy Storage: a Review
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
353
363
. 10.1016/j.rser.2012.11.079
11.
Jayakody
,
H.
,
Al-Dadah
,
R.
, and
Mahmoud
,
S.
,
2017
, “
Computational Fluid Dynamics Investigation on Indirect Contact Freeze Desalination
,”
Desalination
,
420
, pp.
21
33
. 10.1016/j.desal.2017.06.023
12.
Stefan
,
J.
,
1891
, “
Über die Theorie der Eisbildung, Insbesondere über die Eisbildung im Polarmeere
,”
Ann. Phys.
,
278
(
2
), pp.
269
286
. 10.1002/andp.18912780206
13.
Hoffman
,
K. H.
,
1977
,
Fachbereich Mathematik, Vol. I–III
,
Berlin Freie Universitat
,
Berlin
.
14.
Crank
,
J.
,
1987
,
Free and Moving Boundary Problems
,
Oxford University Press
,
Oxford
.
15.
Javierre
,
E.
,
Vuik
,
C.
,
Vermolen
,
F. J.
, and
Van der Zwaag
,
S.
,
2006
, “
A Comparison of Numerical Models for One-Dimensional Stefan Problems
,”
J. Comput. Appl. Math.
,
192
(
2
), pp.
445
459
. 10.1016/j.cam.2005.04.062
16.
Shyy
,
W.
,
Udaykumar
,
H. S.
,
Rao
,
M. M.
, and
Smith
,
R. W.
,
2007
,
Computational Fluid Dynamics With Moving Boundaries
,
Dover Publications
,
Mineola, NY
.
17.
Jana
,
S.
,
Ray
,
S.
, and
Durst
,
F.
,
2007
, “
A Numerical Method to Compute Solidification and Melting Processes
,”
Appl. Math. Model.
,
31
(
1
), pp.
93
119
. 10.1016/j.apm.2005.08.012
18.
Zhang
,
H.
,
Prasad
,
V.
, and
Moallemi
,
M. K.
,
1996
, “
Numerical Algorithm Using Multizone Adaptive Grid Generation for Multiphase Transport Processes with Moving and Free Boundaries
,”
Numer. Heat Transfer
,
29
(
4
), pp.
399
421
. 10.1080/10407799608914989
19.
Voller
,
V. R.
,
Cross
,
M.
, and
Walton
,
P. G.
,
1979
,
Assessment of Weak Solution Numerical Techniques for Solving Stefan Problems
,
Pineridge Press
,
Swansea, UK
, pp.
172
181
.
20.
Voller
,
V.
, and
Cross
,
M.
,
1981
, “
Accurate Solutions of Moving Boundary Problems Using the Enthalpy Method
,”
Int. J. Heat Mass Transfer
,
24
(
3
), pp.
545
556
. 10.1016/0017-9310(81)90062-4
21.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
. 10.1016/0017-9310(87)90317-6
22.
Yeoh
,
G. H.
,
Behnia
,
M.
,
De Vahl Davis
,
G.
, and
Leonardi
,
E.
,
1990
, “
A Numerical Study of Three-Dimensional Natural Convection During Freezing of Water
,”
Int. J. Numer. Methods Eng.
,
30
(
4
), pp.
899
914
. 10.1002/nme.1620300420
23.
Mazumder
,
S.
,
2016
,
Numerical Methods of Partial Differential Equations: Finite Difference and Finite Volume Methods
,
Academic Press
,
New York
.
24.
Bourdillon
,
A. C.
,
Verdin
,
P. G.
, and
Thompson
,
C. P.
,
2015
, “
Numerical Simulations of Water Freezing Processes in Cavities and Cylindrical Enclosures
,”
Appl. Therm. Eng.
,
75
, pp
.
839
855
. 10.1016/j.applthermaleng.2014.10.021
25.
Sharma
,
R. K.
,
Ganesan
,
P.
,
Sahu
,
J. N.
,
Metselaar
,
H. S. C.
, and
Mahlia
,
T. M. I.
,
2014
, “
Numerical Study for Enhancement of Solidification of Phase Change Materials Using Trapezoidal Cavity
,”
Powder Technol.
,
268
, pp.
38
47
. 10.1016/j.powtec.2014.08.009
26.
Kell
,
G. S.
,
1975
, “
Density, Thermal Expansivity, and Compressibility of Liquid Water From 0. deg. to 150. deg. Correlations and Tables for Atmospheric Pressure and Saturation Reviewed and Expressed on 1968 Temperature Scale
,”
J. Chem. Eng. Data
,
20
(
1
), pp.
97
105
. 10.1021/je60064a005
27.
Hobbs
,
P. V.
,
2010
,
Ice Physics
,
Oxford University Press
,
New York
.
28.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries
,
La Canada, CA
.
29.
Whitaker
,
S.
,
1977
,
Fundamental Principles of Heat Transfer
,
Pergamon Press
,
New York
.
30.
Ramesh
,
V.
,
Mazumder
,
S.
,
Matharu
,
G.
,
Vaishnav
,
D.
,
Ali
,
S.
,
Lawrence
,
D.
, and
Desai
,
J.
,
2018
, “
Calibration of External Heat Transfer Coefficients During Cooling of a Partially-Filled Water Tank Using Measured Temperature-Time Data
,”
Proceedings of the IMECE2018
,
Pittsburgh, PA
,
Nov. 11–14
, Paper Number IMECE2018-86716.
You do not currently have access to this content.