Abstract

Cascade adsorption refrigeration technology using high-temperature driving heat is a very promising option for low-temperature cooling applications due to the large temperature difference between the heat source and the cold distributed. The present work carried out a feasibility and parametric study in order to analyze the functioning of a cascading adsorption cycle using the working pair zeolite/ammonia in beds operating at high temperatures and activated carbon/ammonia in those operating at low temperatures. At the nominal thermal conditions, namely, heating, condensing, and evaporating temperatures of 280 °C, 35 °C, and (−5) °C, respectively, the coefficient of performance (COP) and the specific refrigerating capacity (SCP) of the cycle were 0.53 and 67.1 W/kg. When the driving temperature is varied from 260 °C to 320 °C, the COP increases by 57% and the SCP by 36%. The performance of the cascading adsorption cycle at negative evaporating temperatures is very satisfactory.

References

1.
Anirban
,
S.
, and
Randip
,
K. D.
,
2010
, “
Review on Solar Adsorption Refrigeration Cycle
,”
Int. J. Mech. Eng. Technol.
,
1
(
1
), pp.
190
226
.
2.
Vasiliev
,
L. L.
,
Kanonchik
,
L. E.
,
Antuh
,
A. A.
, and
Kulakov
,
A. G.
,
1996
, “
NaX Zeolite, Carbon Fibre and CaCl2 Ammonia Reactors for Heat Pumps and Refrigerators
,”
Adsorption
,
2
(
4
), pp.
311
316
. 10.1007/BF00879546
3.
Wang
,
D. C.
,
Li
,
Y. H.
,
Li
,
D.
,
Xia
,
Y. Z.
, and
Zhang
,
J. P.
,
2010
, “
A Review on Adsorption Refrigeration Technology and Adsorption Deterioration in Physical Adsorption Systems
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
344
353
. 10.1016/j.rser.2009.08.001
4.
Goyal
,
P.
,
Baredar
,
P.
,
Mittal
,
A.
, and
Siddiqui
,
A. R.
,
2016
, “
Adsorption Refrigeration Technology—An Overview of Theory and Its Solar Energy Applications
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
1389
1410
. 10.1016/j.rser.2015.09.027
5.
Ullah
,
K. R.
,
Saidur
,
R.
,
Ping
,
H. W.
,
Akikur
,
R. K.
, and
Shuvo
,
N. H.
,
2013
, “
A Review of Solar Thermal Refrigeration and Cooling Methods
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
499
513
. 10.1016/j.rser.2013.03.024
6.
Wang
,
L. W.
,
Wang
,
R. Z.
, and
Oliveira
,
R. G.
,
2009
, “
A Review on Adsorption Working Pairs for Refrigeration
,”
Renewable Sustainable Energy Rev.
,
13
(
3
), pp.
518
534
. 10.1016/j.rser.2007.12.002
7.
Dakkama
,
H. J.
,
Elsayed
,
A.
,
AL-Dadah
,
R. K.
,
Mahmoud
,
S. M.
, and
Youssef
,
P.
,
2017
, “
Integrated Evaporator–Condenser Cascaded Adsorption System for Low Temperature Cooling Using Different Working Pairs
,”
Appl. Energy
,
185
(
2
), pp.
2117
2126
. 10.1016/j.apenergy.2016.01.132
8.
Choudhury
,
B.
,
Saha
,
B. B.
,
Chatterjee
,
P. K.
, and
Sarkar
,
J. P.
,
2013
, “
An Overview of Developments in Adsorption Refrigeration Systems Towards a Sustainable Way of Cooling
,”
Appl. Energy
,
104
, pp.
554
567
. 10.1016/j.apenergy.2012.11.042
9.
Meunier
,
F.
,
1986
, “
Theoretical Performances of Solid Adsorbent Cascading Cycles Using the Zeolite/Water and Active Carbon/Methanol Pairs: Four Case Studies
,”
J. Heat Recovery Syst.
,
6
(
6
), pp.
491
498
. 10.1016/0198-7593(86)90042-1
10.
Douss
,
N.
,
1993
, “
Experimental Study of Adsorption Heat Pump Cycles
,”
Int. Chem. Eng.
,
33
(
2
), pp.
207
214
.
11.
Stitou
,
D.
,
Spinner
,
B.
,
Satzger
,
P.
, and
Ziegler
,
F.
,
2000
, “
Development and Comparison of Advanced Cascading Cycles Coupling a Solid/Gas Thermochemical Process and a Liquid/Gas Absorption Process
,”
Appl. Therm. Eng.
,
20
(
14
), pp.
1237
1269
. 10.1016/S1359-4311(99)00053-8
12.
Oliveira
,
R. G.
,
Silveira
,
V.
, and
Wang
,
R. Z.
,
2006
, “
Experimental Study of Mass Recovery Adsorption Cycles for Ice Making at Low Generation Temperature
,”
Appl. Therm. Eng.
,
26
(
2–3
), pp.
303
311
. 10.1016/j.applthermaleng.2005.04.021
13.
Douss
,
N.
, and
Meunier
,
F.
,
1989
, “
Experimental Study of Cascading Adsorption Cycles
,”
Chem. Eng. Science
,
44
(
2
), pp.
225
235
. 10.1016/0009-2509(89)85060-2
14.
Liu
,
Y.
, and
Leong
,
K. C.
,
2006
, “
Numerical Study of a Novel Cascading Adsorption Cycle
,”
Int. J. Refrig.
,
29
(
2
), pp.
250
259
. 10.1016/j.ijrefrig.2005.05.008
15.
Uyun
,
A. S.
,
Miyazaki
,
T.
,
Ueda
,
Y.
, and
Akisawa
,
A.
,
2009
, “
High Performance Cascading Adsorption Refrigeration Cycle With Internal Heat Recovery Driven by a Low Grade Heat Source Temperature
,”
Energies
,
2
(
4
), pp.
1170
1191
. 10.3390/en20401170
16.
Uyun
,
A. S.
,
Miyazaki
,
T.
,
Ueda
,
Y.
, and
Akisawa
,
A.
,
2010
, “
Performance Analysis of a Double-Effect Adsorption Refrigeration Cycle With a Silica Gel/Water Working Pair
,”
Energies
,
3
(
11
), pp.
1704
1720
. 10.3390/en3111704
17.
Sah
,
R. P.
,
Choudhury
,
B.
, and
Das
,
R. K.
,
2016
, “
A Review on Low Grade Heat Powered Adsorption Cooling Systems for Ice Production
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
109
120
. 10.1016/j.rser.2016.04.036
18.
Fernandes
,
M. S.
,
Brites
,
G. J. V. N.
,
Costa
,
J. J.
,
Gaspar
,
A. R.
, and
Costa
,
V. A. F.
,
2014
, “
Review and Future Trends of Solar Adsorption Refrigeration Systems
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
102
123
. 10.1016/j.rser.2014.07.081\\\\
19.
Dieng
,
A. O.
, and
Wang
,
R. Z.
,
2001
, “
Literature Review on Solar Adsorption Technologies for Ice-Making and Air-Conditioning Purposes and Recent Developments in Solar Technology
,”
Renewable Sustainable Energy Rev.
,
5
(
4
), pp.
313
342
. 10.1016/S1364-0321(01)00004-1
20.
Critoph
,
R. E.
,
1989
, “
Activated Carbon Adsorption Cycles for Refrigeration and Heat Pumping
,”
Carbon
,
27
(
1
), pp.
63
70
. 10.1016/0008-6223(89)90157-7
21.
Tamainot-Telto
,
Z.
, and
Critoph
,
R. E.
,
1997
, “
Adsorption Refrigerator Using Monolithic Carbon-Ammonia Pair
,”
Int. J. Refrig.
,
20
(
2
), pp.
146
155
. 10.1016/S0140-7007(96)00053-9
22.
Tamainot-Telto
,
Z.
, and
Critoph
,
R. E.
,
2003
, “
Advanced Solid Sorption Air Conditioning Modules Using Monolithic Carbon–Ammonia Pair
,”
Appl. Therm. Eng.
,
23
(
6
), pp.
659
674
. 10.1016/S1359-4311(02)00238-7
23.
Tamainot-Telto
,
Z.
,
Metcalf
,
S. J.
,
Critoph
,
R. E.
,
Zhong
,
Y.
, and
Thorpe
,
R.
,
2009
, “
Carbon–Ammonia Pairs for Adsorption Refrigeration Applications: Ice Making, Air Conditioning and Heat Pumping
,”
Int. J. Refrig.
,
32
(
6
), pp.
1212
1229
. 10.1016/j.ijrefrig.2009.01.008
24.
Metcalf
,
S. J.
,
Critoph
,
R. E.
, and
Tamainot-Telto
,
Z.
,
2012
, “
Optimal Cycle Selection in Carbon-Ammonia Adsorption Cycles
,”
Int. J. Refrig.
,
35
(
3
), pp.
571
580
. 10.1016/j.ijrefrig.2011.11.006
25.
Zhao
,
Y. J.
,
Wang
,
L. W.
,
Wang
,
R. Z.
,
Ma
,
K. Q.
, and
Jiang
,
L.
,
2013
, “
Study on Consolidated Activated Carbon: Choice of Optimal Adsorbent for Refrigeration Application
,”
Int. J. Heat Mass Transfer
,
67
, pp.
867
876
. 10.1016/j.ijheatmasstransfer.2013.08.052
26.
Aghbalou
,
F.
,
Mimet
,
A.
,
Badia
,
F.
,
Illa
,
J.
,
El Bouardi
,
A.
, and
Bougard
,
J.
,
2004
, “
Heat and Mass Transfer During Adsorption of Ammonia in a Cylindrical Adsorbent Bed: Thermal Performance Study of a Combined Parabolic Solar Collector, Water Heat Pipe and Adsorber Generator Assembly
,”
Appl. Therm. Eng.
,
24
(
17–18
), pp.
2537
2555
. 10.1016/j.applthermaleng.2004.04.009
27.
Louajari
,
M.
,
Ouammi
,
A.
, and
Mimet
,
A.
,
2010
, “
Sustainable Development of a Solar Adsorption Cooling Machine
,”
Manag. Environ. Qual. Int. J.
,
21
(
5
), pp.
589
601
. 10.1108/14777831011067908
28.
Shelton
,
S. V.
,
Wepfer
,
W. J.
, and
Miles
,
D. J.
,
1989
, “
Square Wave Analysis of the Solid-Vapor Adsorption Heat Pump
,”
Heat Recovery Syst. CHP
,
9
(
3
), pp.
233
247
. 10.1016/0890-4332(89)90007-0
29.
Halim
,
A. A.
,
Aziz
,
H. A.
,
Johari
,
M. A. M.
, and
Ariffin
,
K. S.
,
2010
, “
Comparison Study of Ammonia and COD Adsorption on Zeolite, Activated Carbon and Composite Materials in Landfill Leachate Treatment
,”
Desalination
,
262
(
1–3
), pp.
31
35
. 10.1016/j.desal.2010.05.036
30.
Hassan
,
H. Z.
,
Mohamad
,
A. A.
,
Alyousef
,
Y.
, and
Al-Ansary
,
H. A.
,
2015
, “
A Review on the Equations of State for the Working Pairs Used in Adsorption Cooling Systems
,”
Renewable Sustainable Energy Rev.
,
45
, pp.
600
609
. 10.1016/j.rser.2015.02.008
31.
Ben Amar
,
N.
,
Sun
,
L. M.
, and
Meunier
,
F.
,
1996
, “
Numerical Analysis of Adsorptive Temperature Wave Regenerative Heat Pump
,”
Appl. Therm. Eng.
,
16
(
5
), pp.
405
418
. 10.1016/1359-4311(95)00045-3
You do not currently have access to this content.