Abstract

This work aims to characterize the hydrodynamic and thermal behaviors in an innovative scraped surface heat exchanger (SSHE) equipped with helical ribbon by means of the numerical simulation approach. In this study, the conservation equations of continuity, momentum, and energy in the laminar, steady-state and isothermal conditions are resolved using a specific computational fluid dynamics (CFD) code based on the 3D finite volume method. The effects of the gap between the exchanger wall and the tip of the ribbon, the ribbon width, and the number of turns in the ribbon on the hydrodynamic and thermal behaviors are studied. Varying the gap values leads to reveal an optimum value giving the highest heat transfer coefficient. Moreover, numerical results have shown that increasing the ribbon width improves the heat transfer. Furthermore, the influence of the number of turns is carried out for Reynolds number ratios (Rer/Rea) inferior and superior to 1. Results revealed that increasing the number of turns avoids the back-mixing phenomenon and thus improves the heat transfer. In this study, the establishment of correlation is determined with the introduction of dimensionless and geometrical groups to predict the heat transfer coefficient in SSHE.

References

References
1.
Trommelen
,
A. M.
, and
Beek
,
W. J.
,
1971
, “
Flow Phenomena in Scraped-Surface Heat Exchanger
,”
Chem. Eng. Sci.
,
26
(
11
), pp.
1933
1942
. 10.1016/0009-2509(71)86035-9
2.
De Goede
,
R.
, and
De Jong
,
E. J.
,
1993
, “
Heat Transfer Properties of Scraped-Surface Heat Exchanger in the Turbulent Flow Regime
,”
Chem. Eng. Sci.
,
48
(
8
), pp.
1393
1404
. 10.1016/0009-2509(93)80046-S
3.
Saraceno
,
L.
,
Boccardi
,
G.
,
Celata
,
G. P.
,
Lazzarini
,
R.
, and
Trinchieri
,
R.
,
2011
, “
Development of two Heat Transfer Correlations for a Scraped-Surface Heat Exchanger in an ice-Cream Machine
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
4106
4112
. 10.1016/j.applthermaleng.2011.08.022
4.
Sykora
,
S.
, and
Navratil
,
B.
,
1968
, “
Heat Transfer on Scraped Walls, Collection Czechoslov
,”
Chem. Comm.
,
33
, p.
518
.
5.
Maingonnat
,
J. F.
, and
Corrieu
,
C.
,
1985
, “
Performances Thermiques D’un échangeur de Chaleur à Surface Raclée Traitant des Produits Alimentaires Newtoniens et non Newtoniens
,”
Rev. Gen. Therm.
, pp.
279
299
.
6.
Örvos
,
M.
,
Balazs
,
T.
,
Both
,
K. F.
, and
Csury
,
I.
,
1994
, “
Investigation of Heat Transfer Conditions in Scraped Surface Heat Exchanger
,”
Periodica Polytechnica Ser. Mech. Eng.
,
98
(
2–9
), pp.
129
198
.
7.
Baccar
,
M.
, and
Abid
,
M. S.
,
1997
, “
Numerical Analysis of Three-Dimensional Flow and Thermal Behavior in a Scraped-Surface Heat Exchanger
,”
Rev. Gen. Therm.
,
36
(
10
), pp.
782
790
. 10.1016/S0035-3159(97)84838-6
8.
Baccar
,
M.
, and
Abid
,
M. S.
,
1999
, “
Simulation Numérique des Comportements Hydrodynamiques et Thermiques des échangeurs Racleurs Opérant en Régime Turbulent
,”
Int. J. Therm.Sci.
,
38
(
7
), pp.
634
644
. 10.1016/S0035-3159(99)80043-9
9.
Martinez
,
D. S.
,
Solano
,
J. P.
,
Pérez
,
J.
, and
Viedma
,
A.
,
2011
, “
Numerical Investigation of non-Newtonian Flow and Heat Transfer in Tubes of Heat Exchangers with Reciprocating Insert Devices
,”
Front. Heat Mass Transfer
,
2
, p.
033002
. 10.5098. v2.3.3002
10.
Yataghene
,
M.
,
Pruvost
,
J.
,
Fayolle
,
F.
, and
Legrand
,
J.
,
2008
, “
CFD Analysis of the Flow Pattern and Local Shear Rate in a Scraped Surface Heat Exchanger
,”
Chem. Eng. Process.
,
47
(
9–10
), pp.
1550
1561
. 10.1016/j.cep.2007.07.009
11.
Sun
,
K. H.
,
Pyle
,
D. L.
,
Fitt
,
A. D.
,
Please
,
C. P.
,
Baines
,
M. J.
, and
Hall-Taylor
,
N.
,
2004
, “
Numerical Study of 2D Heat Transfer in a Scraped Surface Heat Exchanger
,”
Computers & Fluids
,
33
(
5–6
), pp.
869
880
. 10.1016/j.compfluid.2003.06.009
12.
Blasiak
,
P.
, and
Pietrowicz
,
S.
,
2016
, “
Towards a Better Understanding of 2D Thermal-Flow Processes in a Scraped Surface Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
98
(
7
), pp.
240
256
. 10.1016/j.ijheatmasstransfer.2016.03.004
13.
Crespi-Llorens
,
D.
,
Vicente
,
P.
, and
Viedma
,
A.
,
2018
, “
Experimental Study of Heat Transfer to non-Newtonian Fluids Inside a Scraped Surface Heat Exchanger Using a Generalization Method
,”
Int. J. Heat Mass Transfer
,
118
(
3
), pp.
75
87
. 10.1016/j.ijheatmasstransfer.2017.10.115
14.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow; Series in Computational Methods in Mechanics and Thermal Sciences
,
McGraw Hill
,
New York
.
15.
Ali
,
S.
, and
Baccar
,
M.
,
2017
, “
Numerical Study of Hydrodynamic and Thermal behaviors in a Scraped Surface Heat Exchanger with Helical Ribbons
,”
Appl. Therm. Eng.
,
111
(
2
), pp.
1069
1082
. 10.1016/j.applthermaleng.2016.09.116
16.
Douglas
,
J.
, and
Gunn
,
J. E.
,
1964
, “
A General Formulation of Alternating Direction Implicit Methods
,”
Num. Math.
,
6
(
1
), pp.
428
453
. 10.1007/BF01386093
17.
Mitsoulis
,
E.
,
2007
, “Flows of Viscoplastic Materials: Models and Computations,”
Rheology Reviews 2007
,
D. M.
Binding
,
N. E.
Hudson
, and
R.
Keunings
, eds.,
British Society of Rheology
,
London
, pp.
135
178
.
18.
Papanastasiou
,
T. C.
,
1987
, “
Flow of Materials with Yield
,”
J. Rheol.
,
31
(
5
), pp.
385
404
. 10.1122/1.549926
19.
Vradis
,
G. C.
,
Dougher
,
J.
, and
Kumar
,
S.
,
1993
, “
Entrance Pipe Flow and Heat Transfer for a Bingham Plastic
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
543
552
. 10.1016/0017-9310(93)80030-X
20.
Min
,
T.
,
Hyoung
,
G. C.
,
Jung
,
Y. Y.
, and
Haecheon
,
C.
,
1997
, “
Laminar Convective Heat Transfer of a Bingham Plastic in a Circular Pipe-II. Numerical Approach-Hydrodynamically Developing Flow and Simultaneously Developing Flow
,”
Int. J. Heat Mass Transfer.
,
40
(
15
), pp.
3689
3701
. 10.1016/S0017-9310(97)00004-5
You do not currently have access to this content.