Abstract

This work investigates separate and combined effects of the vane surface roughness and thermal barrier coating (TBC) on the cooling performance of a film-cooled high-pressure turbine vane using computational fluid dynamics (CFD) with conjugate heat transfer (CHT) analysis. The cooling effectiveness and heat transfer coefficient, where are predicted within an investigated range of the roughness height from 5 to 20 µm, are compared with those of the smooth vane. Results show that the roughness height increases local heat transfer coefficients in general in the suction side (SS) and the rear-half portion of the pressure side (PS), thereby reducing the cooling effectiveness. The results are different from those in the suction-side vicinity of the leading edge (LE) to further downstream of the pressure side due to uncertain local heat transfer coefficients. In addition, thermal sensitivity to the roughness height and TBC is investigated based on the volume basis in the roughness height range which is extended to 120 µm. Results show that without TBC, a 120 µm increase in the roughness height causes 24 K and 20 K rises of the average and maximum vane temperatures, respectively. With TBC, the average and maximum vane temperatures are reduced as much as 18 K and 27.8 K, respectively.

References

References
1.
Boynton
,
J. L.
,
Tabibzadeh
,
R.
, and
Hudson
,
S. T.
,
1993
, “
Investigation of Rotor Blade Roughness Effects on Turbine Performance
,”
ASME J. Turbomach.
,
115
(
3
), pp.
614
620
. 10.1115/1.2929298
2.
Bunker
,
R. S.
,
1997
, “
Separate and Combined Effects of Surface Roughness and Turbulence Intensity on Vane Heat Transfer
,”
ASME Paper No. 97-GT-135.
3.
Zhang
,
Q.
,
Goodro
,
M.
,
Ligrani
,
P. M.
,
Trindade
,
R.
, and
Sreekanth
,
S.
,
2005
, “
Influence of Surface Roughness on the Aerodynamic Losses of a Turbine Vane
,”
ASME J. Fluid Eng.
,
128
(
3
), pp.
568
578
. 10.1115/1.2175163
4.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
. 10.1115/1.1400115
5.
Bunker
,
R. S.
,
1997
, “
Effect of Discrete Surface Disturbances on Vane External Heat Transfer
,”
ASME Paper No. 97-GT-134.
6.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2005
, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,”
ASME J. Turbomach.
,
127
(
1
), pp.
200
208
. 10.1115/1.1811101
7.
Matsuda
,
H.
,
Otomo
,
F.
,
Kawagishi
,
H.
,
Inomata
,
A.
,
Niizeki
,
Y.
, and
Sasaki
,
T.
,
2006
, “
Influence of Surface Roughness on Turbine Nozzle Profile Loss and Secondary Loss
,”
ASME Paper No. GT2006-90828.
8.
Neuhaus
,
L.
,
Gilge
,
P.
,
Seume
,
J. R.
, and
Mulleners
,
K.
,
2016
, “
Influence of Surface Roughness on the Turbulent Properties in the Wake of a Turbine Blade
,”
Proceedings of the 18th International Symposium on the Applications of Laser and Imaging Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July 4–7
, pp.
1
21
.
9.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
,
2005
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side due to Surface Roughness
,”
ASME J. Turbomach.
,
128
(
3
), pp.
547
554
. 10.1115/1.2185674
10.
Demling
,
P.
, and
Bogard
,
D. G.
,
2006
, “
The Effects of Obstructions on Film Cooling Effectiveness on the Suction Side of a Gas Turbine Vane
,”
ASME Paper No. GT2006-90577.
11.
Nikuradse
,
J.
,
1933
, “
Laws for Flows in Rough Pipes
,”
VDI-Forchungsheft Series B, 4 (English translation NACA TM 1292, 1950)
.
12.
Glasenapp
,
T.
,
Puetz
,
F.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2017
, “
Assessment of Real Turbine Blade Roughness Parameters for the Design of a Film Cooling Test Rig
,”
ASME Paper No. GT2017-63088.
13.
Boyle
,
R. J.
,
Spuckler
,
C. M.
, and
Lucci
,
B. L.
,
2000
, “
Comparison of Predicted and Measured Turbine Vane Rough Surface Heat Transfer
,”
ASME Paper No. 2000-GT-0217.
14.
Lutum
,
E.
,
Cottier
,
F.
,
Crawford
,
M. E.
,
Laveau
,
B.
, and
Abhar
,
R. S.
,
2015
, “
A Computational Investigation of the Effect of Surface Roughness on Heat Transfer on the Stator Endwall of an Axial Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
229
(
5
), pp.
454
464
. 10.1177/0957650915594705
15.
Boyle
,
R. J.
,
1994
, “
Prediction of Surface Roughness and Incidence Effects on Turbine Performance
,”
ASME J. Turbomach.
,
116
(
4
), pp.
745
751
. 10.1115/1.2929468
16.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2004
, “
Boundary Layer Transition in Separation Bubbles Over Rough Surfaces
,”
ASME Paper No. GT2004-53667.
17.
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2008
, “
Modeling of Rough Wall Boundary Layer Transition and Heat Transfer on Turbine Airfoils
,”
ASME J. Turbomach.
,
130
(
2
), p.
021003
. 10.1115/1.2750675
18.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
. 10.1115/1.3066315
19.
Boyle
,
R. J.
,
Parikh
,
A. H.
,
Nagpal
,
V. K.
,
Halbig
,
M. C.
, and
DiCarlo
,
J. A.
,
2014
, “
Ceramic Matrix Composites for High Pressure Turbine Vanes
,”
ASME Paper No. GT2014-27136.
20.
Feist
,
J. P.
,
Sollazzo
,
P. Y.
,
Berthier
,
S.
,
Charnley
,
B.
, and
Wells
,
J.
,
2012
, “
Application of an Industrial Sensor Coating System on a Rolls-Royce Jet Engine for Temperature Detection
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012101
. 10.1115/1.4007370
21.
Sadowski
,
T.
, and
Golewski
,
P.
,
2012
, “
The Analysis of Heat Transfer and Thermal Stresses in Thermal Barrier Coatings Under Exploitation
,”
Defect Diffus. Forum
,
326–328
, pp.
530
535
. 10.4028/www.scientific.net/DDF.326-328.530
22.
Alizadeh
,
M.
,
Izadi
,
A.
, and
Fathi
,
A.
,
2013
, “
Sensitivity Analysis on Turbine Blade Temperature Distribution Using Conjugate Heat Transfer Simulation
,”
ASME J. Turbomach.
,
136
(
1
), p.
011001
. 10.1115/1.4024637
23.
Prapamonthon
,
P.
,
Xu
,
H. Z.
,
Yang
,
W. S.
, and
Wang
,
J. H.
,
2017
, “
Numerical Study of the Effects of Thermal Barrier Coating and Turbulence Intensity on Cooling Performances of a Nozzle Guide Vane
,”
Energies
,
10
(
3
), p.
362
. 10.3390/en10030362
24.
Halila
,
E. E.
,
Lenahan
,
D. T.
, and
Thomas
,
T. T.
,
1982
, “
Energy Efficient Engine High Pressure Turbine Test Hardware Detailed Design Report
,”
NASA CR-167955
,
NASA Lewis Research Center
.
25.
Zhang
,
Q.
,
Xu
,
H.
,
Wang
,
J.
,
Li
,
G.
,
Wang
,
L.
,
Wu
,
X.
, and
Ma
,
S.
,
2015
, “
Evaluation of CFD Predictions Using Different Turbulence Models on a Film Cooled Guide Vane Under Experimental Conditions
,”
ASME Paper No. GT2015-42563.
26.
Ke
,
Z. Q.
, and
Wang
,
J. H.
,
2016
, “
Conjugate Heat Transfer Simulations of Pulsed Film Cooling on an Entire Turbine Vane
,”
Appl. Therm. Eng.
,
109(Part A)
, pp.
600
609
. 10.1016/j.applthermaleng.2016.08.132
27.
Yoshiara
,
T.
,
Sasaki
,
D.
, and
Nakahashi
,
K.
,
2011
,
Conjugate Heat Transfer Simulation of Cooled Turbine Blades Using Unstructured-Mesh CFD Solver
.
AIAA Paper No. 2011-457 498
.
28.
Cebeci
,
C.
, and
Bradshaw
,
P.
,
1977
,
Momentum Transfer in Boundary Layers
,
Hemisphere Publishing Corporation
,
New York
.
29.
Timko
,
L. P.
,
1984
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,”
NASA CR-168289
,
NASA Lewis Research Center
,
Cleveland, OH
.
30.
Xu
,
H. Z.
,
Wang
,
J. H.
, and
Wang
,
T.
,
2013
, “
Numerical Investigations of Wake and Shock Wave Effects on Film Cooling Performance in a Transonic Turbine Stage: Part 1-Methodology Development and Qualification Over Stationary Stators and Rotors
,”
ASME Paper No. GT2013-94544.
31.
Mangani
,
L.
,
Cerutti
,
M.
,
Maritano
,
M.
, and
Spel
,
M.
,
2010
, “
Conjugate Heat Transfer Analysis of NASA C3X Film Cooled Vane With an Object-Oriented CFD Code
,”
ASME Paper No. GT2010-23458.
32.
Liu
,
J. H.
,
Liu
,
Y. B.
,
He
,
X.
, and
Liu
,
L.
,
2016
, “
Study on TBCs Insulation Characteristics of a Turbine Blade Under Serving Conditions
,”
Case Study Therm. Eng.
,
8
, pp.
250
259
. 10.1016/j.csite.2016.08.004
33.
Zhao
,
L.
, and
Wang
,
T.
,
2012
, “
An Investigation of Treating Adiabatic Wall Temperature as the Driving Temperature in Film Cooling Studies
,”
ASME J. Turbomach.
,
134
(
6
), p.
061032
. 10.1115/1.4006311
You do not currently have access to this content.