Abstract

Due to the penetration of variable renewable energy (VRE) sources into electricity supply grids, conventional coal fired power plants need to operate with greater flexibility while remaining reliable and conserving the lifetime of components. Thick-sectioned components are prone to thermal fatigue cracking as a result of through-wall temperature gradients. These temperature gradients can be significantly amplified during quenching when components at high temperature are unintentionally exposed to colder liquid or steam. Such quench events are known to occur during two-shift operation of a large once-through coal fired tower type boiler. The purpose of this study is to develop and demonstrate a model that can be used to determine the root cause and magnitude of quenching. The model is developed using the least level of detail to make it readily usable by power plant engineers. Two different approaches are used. A liquid tracking model (LTM) was developed from first principles that approximates the liquid level in the superheater as a function of time. The model is presented and verified by comparison with real-plant data. The second approach was to configure a model in flownex, which is a commercially available software package. The LTM model with eight control volumes provided better steam temperature results and was able to simulate the correct superheater pressure behavior without solving the momentum equation. The models proved that a separator overflow was the cause of quenching for this particular case study.

References

References
1.
IEA
,
2018
, “
World Energy Outlook 2018
,”
IEA
,
Paris
. Accessed September 2019.
2.
Rosario
,
R.
,
2019
, “
Managing Thermal Quench Damage at Power Plants
,”
Power
,
Issue 4.1.2019
.
3.
Delong
,
J.
,
Bynum
,
J.
,
Ellis
,
F.
,
Rafiee
,
M.
,
Siddall
,
W.
,
Daikoku
,
T.
, and
Haneda
,
H.
,
1985
, “
Failure Investigation of Eddystone Main Steam Piping
,”
Welding J.
,
64
(
10
), pp.
271
280
.
4.
King
,
J. P.
,
1998
, “
Current Experience in Typical Problems and Failures With Boiler Piping Components and Supports
,”
ASME Pressure Vessels and Piping Conference
,
San Diego, CA
.
5.
EPRI
,
2013
,
Operational Flexibility Implementation: Case Study #2
,
EPRI
,
Palo Alto, CA
,
3002002103
.
6.
Kwon
,
O.
,
Myers
,
M.
,
Karstensen
,
A.
, and
Knowles
,
D.
,
2006
, “
The Effect of the Steam Temperature Fluctuations During Steady State Operation on the Remnant Life of the Superheater Header
,”
Int. J. Pressure Vessels Piping
,
83
(
5
), pp.
349
358
. 10.1016/j.ijpvp.2006.02.012
7.
Sobota
,
T.
,
2017
, “
Increasing the Performance and Reliability of a Power Boiler by Monitoring Thermal and Strength Parameters
,”
E3S Web Conference 13, 04004
,
Cracow, Poland
,
Oct. 12–14, 2016
.
8.
Mandke
,
J.
,
Burghard
,
H.
,
Lamping
,
G.
, and
Campbell
,
W.
,
1991
, “
Industry Survey on Experience With Main Steam Line Thermal Quenching
,”
Proceedings of the American Power Conference
,
Chicago, IL
,
Apr. 29–May 1
, Vol.
53
, pp.
470
473
.
9.
EPRI
,
2015
,
Operational Flexibility Case Study #6: Shutdown Management of a Once-Through Subcritical Coal-Fired Plant
,
EPRI
,
Palo Alto, CA
,
3002007024
.
10.
Tang
,
G.
,
Zhang
,
M.
,
Gu
,
J.
,
Wu
,
Y.
,
Yang
,
H.
,
Zhang
,
Y.
,
Wei
,
G.
, and
Lyu
,
J.
,
2019
, “
Thermal-Hydraulic Calculation and Analysis on Evaporator System of a 660MWe Ultra-Supercritical CFB Boiler
,”
Appl. Therm. Eng.
,
151
, pp.
385
393
. 10.1016/j.applthermaleng.2019.01.060
11.
Alobaid
,
F.
,
Mertens
,
N.
,
Starkloff
,
R.
,
Lanz
,
T.
,
Heinze
,
C.
, and
Epple
,
B.
,
2016
, “
Progress in Dynamic Simulation of Thermal Power Plants
,”
Prog. Energy Combust. Sci.
,
59
, pp.
79
162
. 10.1016/j.pecs.2016.11.001
12.
Adam
,
E.
, and
Marchetti
,
J.
,
1999
, “
Dynamic Simulation of Large Boilers With Natural Recirculation
,”
Comput. Chem. Eng.
,
23
(
8
), pp.
1031
1040
. 10.1016/S0098-1354(99)00269-0
13.
Lazaroiu
,
G.
,
1999
, “
Dynamic Modelling of Steam Boiler Drum
,”
Revue Roumaine des Sciences Techniques Serie Electrotechnique et Energetique
,
44
(
1
), pp.
101
109
.
14.
Walter
,
H.
,
2007
, “
Dynamic Simulation of Natural Circulation Steam Generators With the Use of Finite Volume Algorithms—A Comparison of Four Algorithms
,”
Simulation Modelling Practice and Theory
,
15
(
5
), pp.
565
588
. 10.1016/j.simpat.2007.01.006
15.
Taler
,
J.
,
Dzierwa
,
P.
,
Taler
,
D.
, and
Harchut
,
P.
,
2015
, “
Optimization of the Boiler Start-Up Taking Into Account Thermal Stresses
,”
Energy
,
92
, pp.
160
170
. 10.1016/j.energy.2015.03.095
16.
Sunil
,
P.
,
Barve
,
J.
, and
Nataraj
,
P.
,
2017
, “
Mathematical Modeling, Simulation and Validation of a Boiler Drum: Some Investigations
,”
Energy
,
126
, pp.
312
325
. 10.1016/j.energy.2017.02.140
17.
Starkloff
,
R.
,
Alobaid
,
F.
,
Karner
,
K.
,
Epple
,
B.
,
Schmitz
,
M.
, and
Boehm
,
F.
,
2015
, “
Development and Validation of a Dynamic Simulation Model for a Large Coal-Fired Power Plant
,”
Appl. Therm. Eng.
,
91
, pp.
496
506
. 10.1016/j.applthermaleng.2015.08.015
18.
Kuronen
,
J.
,
Hotti
,
M.
, and
Tuuri
,
S.
,
2016
, “
Modelling and Dynamic Simulation of Cyclically Operated Pulverized Coal-Fired Power Plant
,”
9th EUROSIM Congress on Modelling and Simulation
,
Oulu, Finland
,
Sept. 12–16
.
19.
Sarda
,
P.
,
Hedrick
,
E.
,
Reynolds
,
K.
,
Bhattacharyya
,
D.
,
Zitney
,
S.
, and
Omell
,
B.
,
2018
, “
Development of a Dynamic Model and Control System for Load-Following Studies of Supercritical Pulverised Coal Power Plants
,”
Processes
,
6
(
11
), p.
226
. 10.3390/pr6110226
20.
Zima
,
W.
,
2019
, “
Simulation of Rapid Increase in the Steam Mass Flow Rate at a Supercritical Power Boiler Outlet
,”
Energy
,
173
, pp.
995
1005
. 10.1016/j.energy.2019.02.127
21.
Rousseau
,
P. G.
, and
Gwebu
,
E. Z.
,
2019
, “
Modelling of a Superheater Heat Exchanger With Complex Flow Arrangement Including Flow and Temperature Maldistribution
,”
Heat Transfer Eng.
,
40
(
11
), pp.
862
878
. 10.1080/01457632.2018.1446816
22.
Deng
,
K.
,
Yang
,
C.
,
Chen
,
H.
,
Zhou
,
N.
, and
Huang
,
S.
,
2017
, “
Start-Up and Dynamic Processes Simulation of Supercritical Once-Through Boiler
,”
Appl. Therm. Eng.
,
115
, pp.
937
946
. 10.1016/j.applthermaleng.2017.01.016
23.
Terdalkar
,
R.
,
Doupis
,
D.
,
Clark
,
M.
,
Joshi
,
A.
, and
Wang
,
C.
,
2015
, “
Transient Simulation of High Temperature High Pressure Solar Tower Receiver
,”
Energy Procedia
,
69
, pp.
1451
1460
. 10.1016/j.egypro.2015.03.093
24.
De Klerk
,
G. B.
, and
Rousseau
,
P. G.
,
2018
, “
Dynamic Modelling of Once-Through Boiler Heat Exchangers During Shutdown With Level Tracking as a Tool to Investigate Quenching
,”
Eleventh South African Conference on Computational and Applied Mechanics, SACAM2018
,
Vanderbijlpark, South Africa
,
Sept. 17–19
.
25.
Wang
,
H.
,
Wang
,
H.
,
Zhu
,
T.
, and
Deng
,
W.
,
2017
, “
A Novel Model for Steam Transportation Considering Drainage Loss in Pipeline Networks
,”
Appl. Energy
,
188
, pp.
178
189
. 10.1016/j.apenergy.2016.11.131
26.
Churchill
,
S.
, and
Bernstein
,
M.
,
1977
, “
A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
300
306
. 10.1115/1.3450685
27.
Mills
,
A.
,
1992
,
Heat Transfer
,
Irwin
,
Boston MA
.
28.
Gwebu
,
E. Z.
,
2018
, “
A Methodology for Integrated Thermofluid Modelling of Radiant Superheaters in Steady State and Transient Operations
,”
Ph.D. thesis
,
University of Cape Town
,
South Africa
.
29.
Brummel
,
H. G.
,
2010
,
Thermal Radiation of Gas-Solids Dispersions, Berlin Heidelberg: VDI Heat Atlas
, 2nd ed.,
Springer-Verlag
,
Berlin
.
30.
Taler
,
D.
, and
Taler
,
J.
,
2009
, “
Simplified Analysis of Radiation Heat Exchange in Boiler Superheaters
,”
Heat Transfer Eng.
,
30
(
8
), pp.
1
9
. 10.1080/01457630802659953
31.
Morcos
,
S. M.
, and
Bergles
,
A. E.
,
1975
, “
Experimental Investigation of Combined Forced and Free Laminar Convection in Horizontal Tubes
,”
ASME J. Heat Transfer
,
97
(
2
), pp.
212
219
. 10.1115/1.3450343
32.
Frederking
,
T.
, and
Clark
,
J.
,
1962
, “
Natural Convection Film Boiling on a Sphere
,”
Adv. Cryog. Eng.
,
8
, pp.
501
506
.
33.
Zuber
,
N.
,
1958
, “
On the Stability of Boiling Heat Transfer
,”
Trans. ASME
,
80
, pp.
711
720
.
34.
Takrouri
,
K.
,
Luxat
,
J.
, and
Hamed
,
M.
,
2017
, “
Measurement and Analysis of the Re-Wetting Front Velocity During Quench Cooling of Hot Horizontal Tubes
,”
Nucl. Eng. Des.
,
311
, pp.
184
198
. 10.1016/j.nucengdes.2016.11.026
35.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
74
, pp.
969
976
.
36.
Kutateladze
,
S. S.
,
1948
, “
On the Transition to Film Boiling Under Natural Convection
,”
Kotloturbostroenie
,
3
, pp.
10
12
.
37.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Nucleate Boiling
,”
Ph.D. dissertation
,
Department of Engineering, University of California
,
Los Angeles
.
38.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
You do not currently have access to this content.