Abstract

The thermofluid characteristics of Al2O3–water nanofluid in the annulus of double-helical coiled tubes were experimentally and numerically carried out. The purpose was to investigate the effect of combined enhancement techniques of nanofluid and helicoid tube shape on the performance of a double tube heat exchanger. The effects of concentration of nanoparticles, Reynolds number, coil curvature ratio, and flow arrangement through the annulus of double-helical coiled tube were the main points of interest. Three coiled tube heat exchangers were manufactured and experimentally tested to study the design parameters on the performance of such a heat exchanger. A three-dimensional numerical computational fluid dynamic (CFD) model was developed to get additional insights on the thermal performance of double helically coiled tubes with nanofluid on a level of details not always available in experiments. It was found that the Al2O3–water nanofluid achieved an enhancement by 32% on the overall heat transfer coefficient. The heat exchanger effectiveness, heat transfer per unit pumping power, and the Nusselt number were also presented for different design parameters.

References

1.
Kannadasan
,
N.
,
Ramanathan
,
K.
, and
Suresh
,
S.
,
2012
, “
Comparison of Heat Transfer and Pressure Drop in Horizontal and Vertical Helically Coiled Heat Exchanger With CuO/Water Based Nano Fluids
,”
Exp. Therm. Fluid. Sci.
,
42
, pp.
64
70
. 10.1016/j.expthermflusci.2012.03.031
2.
Fule
,
P. J.
,
Bhanvase
,
B. A.
, and
Sonawane
,
S. H.
,
2017
, “
Experimental Investigation of Heat Transfer Enhancement in Helical Coil Heat Exchangers Using Water Based CuO Nanofluid
,”
Adv. Powder Technol.
,
28
(
9
), pp.
2288
2294
. 10.1016/j.apt.2017.06.010
3.
Srinivas
,
T.
, and
Venu Vinod
,
A.
,
2016
, “
Heat Transfer Intensification in a Shell and Helical Coil Heat Exchanger Using Water-Based Nanofluids
,”
Chem. Eng. Process.
,
102
, pp.
1
8
. 10.1016/j.cep.2016.01.005
4.
Kumar
,
B. A.
, and
Vinod
,
A. V.
,
2018
, “
Heat Transfer Enhancement Using Non-Newtonian Nanofluids in a Shell and Helical Coil Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
90
, pp.
132
142
. 10.1016/j.expthermflusci.2017.08.009
5.
Fsadni
,
A. M.
,
Whitty
,
J. P. M.
,
Stables
,
M. A.
, and
Adeniyi
,
A. A.
,
2017
, “
Numerical Study on Turbulent Heat Transfer and Pressure Drop Characteristics of a Helically Coiled Hybrid Rectangular-Circular Tube Heat Exchanger with Al2O3—Water Nanofluids
,”
Appl. Therm. Eng.
,
114
(
5
), pp.
466
483
. 10.1016/j.applthermaleng.2016.11.181
6.
Aly
,
W. I. A.
,
2014
, “
Numerical Study on Turbulent Heat Transfer and Pressure Drop of Nanofluid in Coiled Tube-in-Tube Heat Exchangers
,”
Energy Convers. Manage.
,
79
, pp.
304
316
. 10.1016/j.enconman.2013.12.031
7.
Elsayed
,
A. M.
,
AL-Dadah
,
R. K.
,
Mahmoud
,
S.
, and
Mahrous
,
A.
,
2011
, “
Numerical Investigation of Laminar Flow Heat Transfer Through Helically Coiled Tubes Using Al2O3 Nanofluid
,”
3rd Micro and Nano Flows Conference Thessaloniki
,
Greece
,
Aug. 22–24
.
8.
Mirfendereski
,
S.
,
Abbassi
,
A.
, and
Saffar-avval
,
M.
,
2015
, “
Experimental and Numerical Investigation of Nanofluid Heat Transfer in Helically Coiled Tubes at Constant Wall Heat flux
,”
Adv. Powder Technol.
,
26
(
5
), pp.
1483
1494
. 10.1016/j.apt.2015.08.006
9.
Mahmoudi
,
M.
,
Tavakoli
,
M. R.
,
Mirsoleimani
,
M. A.
,
Gholami
,
A.
, and
Salimpour
,
M. R.
,
2017
, “
Experimental and Numerical Investigation on Forced Convection Heat Transfer and Pressure Drop in Helically Coiled Pipes Using TiO2/Water Nanofluid
,”
Int. J. Refrig.
,
74
, pp.
627
643
. 10.1016/j.ijrefrig.2016.11.014
10.
Akbarinia
,
A.
, and
Behzadmehr
,
A.
,
2007
, “
Numerical Study of Laminar Mixed Convection of a Nanofluid in Horizontal Curved Tubes
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1327
1337
. 10.1016/j.applthermaleng.2006.10.034
11.
Akbarinia
,
A.
,
2008
, “
Impacts of Nanofluid Flow on Skin Friction Factor and Nusselt Number in Curved Tubes With Constant Mass Flow
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
229
241
. 10.1016/j.ijheatfluidflow.2007.05.003
12.
Bhanvase
,
B.
,
Sayankar
,
S. D.
,
Kapre
,
A.
,
Fule
,
P.
, and
Sonawane
,
S.
,
2018
, “
Experimental Investigation on Intensified Convective Heat Transfer Coefficient of Water Based PANI Nanofluid in Vertical Helical Coiled Heat Exchanger
,”
Appl. Therm. Eng.
,
128
, pp.
134
140
. 10.1016/j.applthermaleng.2017.09.009
13.
El-Said
,
E. M. S.
,
Abdulaziz
,
M.
, and
Awad
,
M.
,
2017
, “
A Numerical Investigation on Heat Transfer Enhancement and the Flow Characteristics in a New Type Plate Heat Exchanger Using Helical Flow Duct
,”
Cogent Eng.
,
4
, p.
1396638
. 10.1080/23311916.2017.1396638
14.
El-Said
,
E. M. S.
,
Abdulaziz
,
M.
, and
Awad
,
M.
,
2018
, “
Thermodynamic Performance Evaluation for Helical Plate Heat Exchanger Based on Second Law Analysis
,”
Proc. Rom. Acad., Ser. A.
,
19
, pp.
237
242
.
15.
El-Said
,
E. M. S.
, and
Abou Al-Sood
,
M. M.
,
2019
, “
Shell and Tube Heat Exchanger With New Segmental Baffles Configurations: A Comparative Experimental Investigation
,”
Appl. Therm. Eng.
,
150
, pp.
803
810
. 10.1016/j.applthermaleng.2019.01.039
16.
El-Said
,
E. M. S.
, and
Abou Al-Sood
,
M. M.
,
2018
, “
Experimental Investigation of Air Injection Effect on the Performance of Horizontal Shell and Multi-Tube Heat Exchanger With Baffles
,”
Appl. Therm. Eng.
,
134
, pp.
238
247
. 10.1016/j.applthermaleng.2018.02.001
17.
Abdelmagied
,
M.
,
2019
, “
Numerical Study of Thermofluid Characteristics of a Double Spirally Coiled Tube Heat Exchanger
,”
ASME. J. Therm. Sci. Eng. Appl.
,
11
(
4
), p.
041008
. 10.1115/1.4043849
18.
Holman
,
J. P.
,
2001
,
Experimental Method for Engineers
, 8th ed.,
McGraw-Hill Book Company
,
New York
, pp.
62
65
.
19.
Wu
,
S.
,
Zhu
,
D.
,
Li
,
X.
,
Li
,
H.
, and
Lei
,
J.
,
2009
, “
Thermal Energy Storage Behavior of Al2O3-H2O Nanofluids
,”
Thermochim. Acta
,
483
(
1–2
), pp.
73
77
. 10.1016/j.tca.2008.11.006
20.
Heyhat
,
M. M.
,
Kowsary
,
F.
,
Rashidi
,
A. M.
,
Momenpour
,
M. H.
, and
Amrollahi
,
A.
,
2013
, “
Experimental Investigation of Laminar Convective Heat Transfer and Pressure Drop of Water-Based Al2O3 Nanofluids in Fully Developed Flow Regime
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
483
489
. 10.1016/j.expthermflusci.2012.08.009
21.
Versteeg
,
H. K.
, and
Malalasesekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics, the Finite Volume Method
,
Longman Group Ltd.
,
UK
.
22.
Gomaa
,
A.
,
Halim
,
M. A.
, and
Elsaid
,
A. M.
,
2017
, “
Enhancement of Cooling Characteristics and Optimization of a Triple Concentric-Tube Heat Exchanger With Inserted Ribs
,”
Int. J. Therm. Sci.
,
120
, pp.
106
120
. 10.1016/j.ijthermalsci.2017.06.002
23.
Gomaa
,
A.
,
Aly
,
W.
,
Omara
,
M.
, and
Abdelmagied
,
M.
,
2013
, “
Correlations for Heat Transfer Coefficient and Pressure Drop in the Annulus of Concentric Helical Coils
,”
Heat and Mass Transfer
,
50
(
4
), pp.
583
586
. https://doi.org/10.1007/s00231-013-1258-0
24.
White
,
F. M.
,
1984
,
Heat Transfer
,
Addison-Wesley Publishing Company Inc.
,
New York
, p.
588
.
25.
Gnielinski
,
V
,
1986
, “
Heat Transfer and Pressure Drop in Helically Coiled Tubes
,”
Proceedings of the International Meeting on Reactor Heat Transfer
,
Karlsruhe, Germany
,
Paper No. 16
, pp.
351
372
.
26.
Abdelmagied
,
M.
, “
Thermal Performance Characteristics of a Triple Spiral Tube Heat Exchanger
,”
Chem. Eng. Process.
(in press). 10.1016/j.cep.2019.107707
You do not currently have access to this content.