Abstract

Battery thermal management (BTM) has an important significance for electronic vehicles to keep them operating in a reasonable temperature range and reduce local temperature differences. In this study, a novel structure of liquid cooling-based lithium-ion battery module with a variable contact area of heat-conductive blocks is proposed. Three-dimensional transient simulations are carried out to investigate the thermal performance of the proposed structure. The effects of block height, height gradient, and inlet velocity are discussed. The results indicate that simply increasing the height of heat-conductive blocks could have a negative effect on cooling performance and that a variable heat transfer area could efficiently improve the temperature uniformity of the battery module. In addition, the thermal performance of the proposed battery module is sensitive to inlet velocity, but the positive effect can be decreased when the velocity is adequately increased. The temperature difference (ΔT) of the battery module with a variable contact area can achieve below 4 °C, and its reduced percentage can be 47.7% compared with that of the module with a consistent contact area when the inlet velocity is 0.2 m/s.

References

References
1.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, “
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energy Convers. Manage.
,
150
, pp.
304
330
. 10.1016/j.enconman.2017.08.016
2.
Lukic
,
S. M.
,
Cao
,
J.
,
Bansal
,
R. C.
,
Rodriguez
,
F.
, and
Emadi
,
A.
,
2008
, “
Energy Storage Systems for Automotive Applications
,”
IEEE Trans. Ind. Electron.
,
55
(
6
), pp.
2258
2267
. 10.1109/TIE.2008.918390
3.
Xia
,
G.
,
Cao
,
L.
, and
Bi
,
G.
,
2017
, “
A Review on Battery Thermal Management in Electric Vehicle Application
,”
J. Power Sources
,
367
, pp.
90
105
. 10.1016/j.jpowsour.2017.09.046
4.
Pesaran
,
A. A.
,
2002
, “
Battery Thermal Models for Hybrid Vehicle Simulations
,”
J. Power Sources
,
110
(
2
), pp.
377
382
. 10.1016/S0378-7753(02)00200-8
5.
Sasaki
,
T.
,
Ukyo
,
Y.
, and
Novák
,
P.
,
2013
, “
Memory Effect in a Lithium-Ion Battery
,”
Nat. Mater.
,
12
(
6
), p.
569
575
. 10.1038/nmat3623
6.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
3
), pp.
R1
R25
. 10.1149/1.3515880
7.
Smith
,
K.
, and
Wang
,
C. Y.
,
2006
, “
Power and Thermal Characterization of a Lithium-Ion Battery Pack for Hybrid-Electric Vehicles
,”
J. Power Sources
,
160
(
1
), pp.
662
673
. 10.1016/j.jpowsour.2006.01.038
8.
Wu
,
W.
,
Wang
,
S.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S.
, and
Lai
,
Y.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manage.
,
182
, pp.
262
281
. 10.1016/j.enconman.2018.12.051
9.
Conte
,
F. V.
,
2006
, “
Battery and Battery Management for Hybrid Electric Vehicles: A Review
,”
e & i Elektrotechnik und Informationstechnik
,
123
(
10
), pp.
424
431
. 10.1007/s00502-006-0383-6
10.
Zhao
,
J.
,
Rao
,
Z.
, and
Li
,
Y.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manage.
,
103
, pp.
157
165
. 10.1016/j.enconman.2015.06.056
11.
Basu
,
S.
,
Hariharan
,
K. S.
,
Kolake
,
S. M.
,
Song
,
T.
,
Sohn
,
D. K.
, and
Yeo
,
T.
,
2016
, “
Coupled Electrochemical Thermal Modelling of a Novel Li-Ion Battery Pack Thermal Management System
,”
Appl. Energy
,
181
, pp.
1
13
. 10.1016/j.apenergy.2016.08.049
12.
Zhao
,
C.
,
Cao
,
W.
,
Dong
,
T.
, and
Jiang
,
F.
,
2018
, “
Thermal Behavior Study of Discharging/Charging Cylindrical Lithium-Ion Battery Module Cooled by Channeled Liquid Flow
,”
Int. J. Heat Mass Transfer
,
120
, pp.
751
762
. 10.1016/j.ijheatmasstransfer.2017.12.083
13.
Tang
,
Z.
,
Min
,
X.
,
Song
,
A.
, and
Cheng
,
J.
,
2018
, “
Thermal Management of a Cylindrical Lithium-Ion Battery Module Using a Multichannel Wavy Tube
,”
J. Energy Eng.
,
145
(
1
), p.
04018072
. 10.1061/(ASCE)EY.1943-7897.0000592
14.
Li
,
K.
,
Yan
,
J.
,
Chen
,
H.
, and
Wang
,
Q.
,
2018
, “
Water Cooling Based Strategy for Lithium Ion Battery Pack Dynamic Cycling for Thermal Management System
,”
Appl. Therm. Eng.
,
132
, pp.
575
585
. 10.1016/j.applthermaleng.2017.12.131
15.
Greco
,
A.
,
Jiang
,
X.
, and
Cao
,
D.
,
2015
, “
An Investigation of Lithium-Ion Battery Thermal Management Using Paraffin/Porous-Graphite-Matrix Composite
,”
J. Power Sources
,
278
, pp.
50
68
. 10.1016/j.jpowsour.2014.12.027
16.
Zhao
,
C.
,
Sousa
,
A. C.
, and
Jiang
,
F.
,
2019
, “
Minimization of Thermal Non-Uniformity in Lithium-Ion Battery Pack Cooled by Channeled Liquid Flow
,”
Int. J. Heat Mass Transfer
,
129
, pp.
660
670
. 10.1016/j.ijheatmasstransfer.2018.10.017
17.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
. 10.1016/j.enconman.2014.10.015
You do not currently have access to this content.