Abstract

Heat recovery between outdoor air and indoor exhaust air is an effective approach for energy-saving in the air-conditioning system. Performances of enthalpy recovery devices using liquid desiccant (LD) and desiccant wheel (DW) are compared in the present study. Effects of key factors including desiccant flow rate, number of transfer units (NTUm), and air inlet parameters on recovery performance are analyzed. There exists the same ideal recovery efficiency with a given NTUm for these two kinds of devices. However, an optimal solution flow rate could be achieved for enthalpy recovery device using LD, while a higher rotation speed leads to a higher recovery efficiency for that using DW. Recovery efficiencies of the two devices increase with the increase in NTUm, while they have different ranges of NTUm. NTUm of the DW is usually superior to that of the LD, due to the material difference. Then, the optimum methods to improve recovery efficiency of the two devices are clarified, i.e., increasing NTUm for an enthalpy recovery device using LD and choosing a reasonable rotation speed for that using DW, respectively. The present research will be beneficial to cast light on the relation between enthalpy recovery devices using LD and DW.

References

References
1.
Building Energy Research Center of Tsinghua University
,
2015
,
2015 Annual Report on China Building Energy Efficiency
,
China Architecture and Building Press
,
Beijing
.
2.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Energy Buildings
,
40
(
3
), pp.
394
398
. 10.1016/j.enbuild.2007.03.007
3.
ASHRAE
,
2007
,
ANSI/ASHRAE 62.1-2007, Ventilation for Acceptable Indoor Air Quality
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
.
4.
Chua
,
K. J.
,
Chou
,
S. K.
,
Yang
,
W. M.
, and
Yan
,
J.
,
2013
, “
Achieving Better Energy-Efficient Air Conditioning—A Review of Technologies and Strategies
,”
Appl. Energy
,
104
, pp.
87
104
. 10.1016/j.apenergy.2012.10.037
5.
Solupe
,
M.
, and
Krarti
,
M.
,
2014
, “
Assessment of Infiltration Heat Recovery and Its Impact on Energy Consumption for Residential Buildings
,”
Energy Convers. Manage.
,
78
, pp.
316
323
. 10.1016/j.enconman.2013.10.058
6.
Salvalai
,
G.
,
Pfafferott
,
J.
, and
Sesana
,
M. M.
,
2013
, “
Assessing Energy and Thermal Comfort of Different Low-Energy Cooling Concepts for Non-Residential Buildings
,”
Energy Convers. Manage.
,
76
, pp.
332
341
. 10.1016/j.enconman.2013.07.064
7.
Cuce
,
P. M.
, and
Riffat
,
S.
,
2015
, “
A Comprehensive Review of Heat Recovery Systems for Building Applications
,”
Renew. Sust. Energy Rev.
,
47
, pp.
665
682
. 10.1016/j.rser.2015.03.087
8.
Cola
,
F.
,
Romagnoli
,
A.
, and
Hey
,
J.
,
2016
, “
An Evaluation of the Technologies for Heat Recovery to Meet Onsite Cooling Demands
,”
Energy Convers. Manage.
,
121
, pp.
174
185
. 10.1016/j.enconman.2016.05.021
9.
Liu
,
X. P.
, and
Niu
,
J. L.
,
2014
, “
An Optimal Design Analysis Method for Heat Recovery Devices in Building Applications
,”
Appl. Energy
,
129
, pp.
364
372
. 10.1016/j.apenergy.2014.05.024
10.
Fehrm
,
M.
,
Reiners
,
W.
, and
Ungemach
,
M.
,
2002
, “
Exhaust Air Heat Recovery in Buildings
,”
Int. J. Refrig.
,
25
, pp.
439
449
. 10.1016/S0140-7007(01)00035-4
11.
Besant
,
R. W.
, and
Simonson
,
C.
,
2003
, “
Air-to-Air Exchangers
,”
ASHRAE J.
,
45
, pp.
42
52
.
12.
Fernández-Seara
,
J.
,
Diz
,
R.
,
Uhía
,
F. J.
,
Dopazo
,
A.
, and
Ferro
,
J. M.
,
2011
, “
Experimental Analysis of an Air-to-Air Heat Recovery Unit for Balanced Ventilation Systems in Residential Buildings
,”
Energy Convers. Manage.
,
52
, pp.
635
640
. 10.1016/j.enconman.2010.07.040
13.
Zhang
,
L. Z.
, and
Niu
,
J. L.
,
2002
, “
Performance Comparisons of Desiccant Wheels for Air Dehumidification and Enthalpy Recovery
,”
Appl. Therm. Eng.
,
22
, pp.
1347
1367
. 10.1016/S1359-4311(02)00050-9
14.
Delfani
,
S.
,
Pasdarshahri
,
H.
, and
Karami
,
M.
,
2012
, “
Experimental Investigation of Heat Recovery System for Building Air Conditioning in Hot and Humid Areas
,”
Energy Buildings
,
49
, pp.
62
68
. 10.1016/j.enbuild.2012.01.002
15.
Nam
,
S. H.
, and
Han
,
H.
,
2016
, “
Computational Modeling and Experimental Validation of Heat Recovery Ventilator Under Partially Wet Conditions
,”
Appl. Therm. Eng.
,
95
, pp.
229
235
. 10.1016/j.applthermaleng.2015.11.023
16.
Fu
,
H. X.
,
Yang
,
Q. R.
, and
Zhang
,
L. Z.
,
2017
, “
Effects of Material Properties on Heat and Mass Transfer in Honeycomb-Type Adsorbent Wheels for Total Heat Recovery
,”
Appl. Therm. Eng.
,
118
, pp.
345
356
. 10.1016/j.applthermaleng.2017.03.006
17.
Wallin
,
J.
, and
Claesson
,
J.
,
2014
, “
Improving Heat Recovery Using Retrofitted Heat Pump in Air Handling Unit With Energy Wheel
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
823
829
. 10.1016/j.applthermaleng.2013.09.059
18.
Liang
,
C. H.
,
Zhang
,
L. Z.
, and
Pei
,
L. X.
,
2010
, “
Performance Analysis of a Direct Expansion air Dehumidification System Combined With Membrane-Based Total Heat Recovery
,”
Energy
,
35
, pp.
3891
3901
. 10.1016/j.energy.2010.06.002
19.
Zhang
,
T.
,
Liu
,
X. H.
, and
Jiang
,
Y.
,
2016
, “
Performance Investigation and Exergy Analysis of Enthalpy Recovery Device Using Liquid Desiccant
,”
Appl. Therm. Eng.
,
106
, pp.
76
86
. 10.1016/j.applthermaleng.2016.06.002
20.
Mahmud
,
K.
,
Mahmood
,
G. I.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2010
, “
Performance Testing of a Counter-Cross-Flow Run-Around Membrane Energy Exchanger (RAMEE) System for HVAC Applications
,”
Energy Buildings
,
42
, pp.
1139
1147
. 10.1016/j.enbuild.2010.02.005
21.
Ge
,
G. M.
,
Xiao
,
F.
, and
Xu
,
X. H.
,
2011
, “
Model-Based Optimal Control of a Dedicated Outdoor Air Chilled Ceiling System Using Liquid Desiccant and Membrane-Based Total Heat Recovery
,”
Appl. Energy
,
88
, pp.
4180
4190
. 10.1016/j.apenergy.2011.04.045
22.
Liu
,
X. H.
,
Zhang
,
Y.
,
Qu
,
K. Y.
, and
Jiang
,
Y.
,
2006
, “
Experimental Study on Mass Transfer Performances of Cross Flow Dehumidifier Using Liquid Desiccant
,”
Energy Convers. Manage.
,
47
, pp.
2682
2692
. 10.1016/j.enconman.2005.10.035
23.
Babakhani
,
D.
,
Soleymani
,
M.
, and
Moheb
,
A.
,
2010
, “
Heat and Mass Transfer Between Air and Liquid Desiccant in Cross-Flow Contact Systems
,”
Chem. Eng. Technol.
,
33
, pp.
281
291
. 10.1002/ceat.200900383
24.
Liu
,
X. H.
,
Li
,
Z.
, and
Zhang
,
T.
,
2014
,
Liquid Desiccant Dehumidification
,
China Architecture and Building Press
,
Beijing
.
25.
Liu
,
X. H.
,
Zhang
,
T.
,
Zheng
,
Y. W.
, and
Tu
,
R.
,
2016
, “
Performance Investigation and Exergy Analysis of Two-Stage Desiccant Wheel Systems
,”
Renew. Energy
,
86
, pp.
877
888
. 10.1016/j.renene.2015.09.025
26.
Fatemeh
,
E. N.
,
Patrick
,
E. P.
, and
Dolf van
,
P.
,
2011
, “
A New Approach to Study and Compare the Annual Performance of Liquid and Solid Desiccant Cooling Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021002
. 10.1115/1.4003826
27.
Liu
,
X. H.
,
Jiang
,
Y.
,
Xia
,
J. J.
, and
Chang
,
X. M.
,
2007
, “
Analytical Solutions of Coupled Heat and Mass Transfer Processes in Liquid Desiccant Air Dehumidifier/Regenerator
,”
Energy Convers. Manage.
,
48
, pp.
2221
2232
. 10.1016/j.enconman.2006.12.009
28.
Tu
,
R.
,
Liu
,
X. H.
, and
Jiang
,
Y.
,
2013
, “
Performance Comparison Between Enthalpy Recovery Wheels and Dehumidification Wheels
,”
Int. J. Refrig.
,
36
, pp.
2308
2322
. 10.1016/j.ijrefrig.2013.07.014
29.
Zhang
,
T.
,
Liu
,
X. H.
,
Zhang
,
L.
, and
Jiang
,
Y.
,
2012
, “
Match Properties of Heat Transfer and Coupled Heat and Mass Transfer Processes in Air-Conditioning System
,”
Energy Convers. Manage.
,
53
, pp.
103
113
. 10.1016/j.enconman.2012.02.018
30.
Ding
,
Y. F.
,
Ding
,
J.
,
Fang
,
Y. T.
, and
Yang
,
X. X.
,
2006
, “
Study on Heat and Mass Transfer Performance of an Al3+-Doped Silicagel Rotary Dehumidifier (in Chinese)
,”
ASME J. Guangzhou Univ.
,
5
, pp.
80
85
.
You do not currently have access to this content.