Abstract

Numerical studies on heat transfer in Taylor-Couette-Poiseuille flow in a cylindrical annulus with ribs mounted on the rotating inner cylinder are presented. The present study focuses on two different types of ribs, namely, longitudinal ribs and helical ribs. Three-dimensional, steady, incompressible, turbulent fluid flow is solved using a semi-implicit method for pressure linked equations (SIMPLE) algorithm based finite volume method. The numerical solution method is validated using two sets of benchmark experimental data. Extensive numerical computations are carried out at various Reynolds numbers (2100 < Re < 2400) and modified Taylor numbers (30,000 < Tam < 90,000) for annulus with and without ribs. Ribs enhance the transport of heat and momentum by inducing more vorticity and turbulence in the flow. The overall performance is presented in terms of thermal performance factor (TPF), which takes in to account the heat transfer as well as pressure drop in the ribbed annulus. Helical ribs are found to offer superior thermal performance than its longitudinal counterpart.

References

1.
Becker
,
K. M.
, and
Kaye
,
J.
,
1962
, “
Measurements of Diabatic Flow in an Annulus With an Inner Rotating Cylinder
,”
J. Heat Transf.
,
84
(
2
), pp.
97
104
. 10.1115/1.3684335
2.
Haut
,
B.
,
Amor
,
H. B.
,
Coulon
,
L.
,
Jacquet
,
A.
, and
Halloin
,
V.
,
2003
, “
Hydrodynamics and Mass Transfer in a Couette–Taylor Bioreactor for the Culture of Animal Cells
,”
Chem. Eng. Sci.
,
58
(
3–6
), pp.
777
784
. 10.1016/S0009-2509(02)00607-3
3.
Dusting
,
J.
, and
Balabani
,
S.
,
2009
, “
Mixing in a Taylor–Couette Reactor in the Non-Wavy Flow Regime
,”
Chem. Eng. Sci.
,
64
(
13
), pp.
3103
3111
. 10.1016/j.ces.2009.03.046
4.
Fénot
,
M.
,
Dorignac
,
E.
,
Giret
,
A.
, and
Lalizel
,
G.
,
2013
, “
Convective Heat Transfer in the Entry Region of an Annular Channel With Slotted Rotating Inner Cylinder
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
345
358
. 10.1016/j.applthermaleng.2012.10.039
5.
Kuzay
,
T. M.
, and
Scott
,
C. J.
,
1977
, “
Turbulent Heat Transfer Studies in Annulus With Inner Cylinder Rotation
,”
J. Heat Transf.
,
99
(
1
), pp.
12
19
. 10.1115/1.3450635
6.
Gardiner
,
S. R. M.
, and
Sabersky
,
R. H.
,
1978
, “
Heat Transfer in an Annular Gap
,”
Int. J. Heat Mass Transf.
,
21
(
12
), pp.
1459
1466
. 10.1016/0017-9310(78)90002-9
7.
Lee
,
Y. N.
, and
Minkowycz
,
W. J.
,
1989
, “
Heat Transfer Characteristics of the Annulus of Two Coaxial Cylinders With One Cylinder Rotating
,”
Int. J. Heat Mass Transf.
,
32
(
4
), pp.
711
722
. 10.1016/0017-9310(89)90218-4
8.
Sommerer
,
Y.
, and
Lauriat
,
G.
,
2001
, “
Numerical Study of Steady Forced Convection in a Grooved Annulus Using a Design of Experiments
,”
J. Heat Transf.
,
123
(
5
), pp.
837
848
. 10.1115/1.1388299
9.
Nouri-Borujerdi
,
A.
, and
Nakhchi
,
M. E.
,
2017
, “
Heat Transfer Enhancement in Annular Flow With Outer Grooved Cylinder and Rotating Inner Cylinder: Review and Experiments
,”
Appl. Therm. Eng.
,
120
, pp.
257
268
. 10.1016/j.applthermaleng.2017.03.095
10.
Wu
,
H. W.
,
Zirakzadeh
,
H.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2018
, “
Heat Transfer in a Rib and Pin Roughened Rotating Multipass Channel With Hub Turning Vane and Trailing-Edge Slot Ejection
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021011
. 10.1115/1.4037584
11.
Zhang
,
M.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2019
, “
Rib Turbulator Heat Transfer Enhancements at Very High Reynolds Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061014
. 10.1115/1.4043465
12.
Gilchrist
,
S.
,
Ching
,
C. Y.
, and
Ewing
,
D.
,
2005
, “
Heat Transfer Enhancement in Axial Taylor-Couette Flow
,”
ASME 2005 Summer Heat Transfer Conference Collocated With the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
,
San Francisco, CA
,
July 17–22
, pp.
227
233
.
13.
Jeng
,
T. M.
,
Tzeng
,
S. C.
, and
Lin
,
C. H.
,
2007
, “
Heat Transfer Enhancement of Taylor–Couette–Poiseuille Flow in an Annulus by Mounting Longitudinal Ribs on the Rotating Inner Cylinder
,”
Int. J. Heat Mass Transf.
,
50
(
1–2
), pp.
381
390
. 10.1016/j.ijheatmasstransfer.2006.06.005
14.
Ghose
,
P.
,
Datta
,
A.
, and
Mukhopadhyay
,
A.
,
2016
, “
Effect of Prediffuser Angle on the Static Pressure Recovery in Flow Through Casing-Liner Annulus of a Gas Turbine Combustor at Various Swirl Levels
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
1
), p.
011017
. 10.1115/1.4030734
15.
Abou-Ziyan
,
H. Z.
,
Helali
,
A. H. B.
, and
Selim
,
M. Y.
,
2016
, “
Enhancement of Forced Convection in Wide Cylindrical Annular Channel Using Rotating Inner Pipe With Interrupted Helical Fins
,”
Int. J. Heat Mass Transf.
,
95
, pp.
996
1007
. 10.1016/j.ijheatmasstransfer.2015.12.066
16.
Brahim
,
B.
,
2017
, “
Numerical Simulation of the Effect of Rib Orientation on Fluid Flow and Heat Transfer in Rotating Serpentine Passages
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011008
. 10.1115/1.4034597
17.
Kuosa
,
M.
,
Sallinen
,
P.
, and
Larjola
,
J.
,
2004
, “
Numerical and Experimental Modelling of Gas Flow and Heat Transfer in the Air Gap of an Electric Machine
,”
J. Therm. Sci.
,
13
(
3
), p.
264
278
. 10.1007/s11630-004-0041-4
18.
Poncet
,
S.
,
Haddadi
,
S.
, and
Viazzo
,
S.
,
2011
, “
Numerical Modeling of Fluid Flow and Heat Transfer in a Narrow Taylor–Couette–Poiseuille System
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
128
144
. 10.1016/j.ijheatfluidflow.2010.08.003
19.
Poncet
,
S.
,
Viazzo
,
S.
, and
Oguic
,
R.
,
2014
, “
Large Eddy Simulations of Taylor-Couette-Poiseuille Flows in a Narrow-Gap System
,”
Phys. Fluids
,
26
(
10
), p.
105108
. 10.1063/1.4899196
20.
Lancial
,
N.
,
Torriano
,
F.
,
Beaubert
,
F.
,
Harmand
,
S.
, and
Rolland
,
G.
,
2017
, “
Taylor-Couette-Poiseuille Flow and Heat Transfer in an Annular Channel With a Slotted Rotor
,”
Int. J. Therm. Sci.
,
112
, pp.
92
103
. 10.1016/j.ijthermalsci.2016.09.022
21.
Kataoka
,
K.
,
Doi
,
H.
, and
Komai
,
T.
,
1977
, “
Heat/Mass Transfer in Taylor Vortex Flow With Constant Axial Flow Rates
,”
Int. J. Heat Mass Transf.
,
20
(
1
), pp.
57
63
. 10.1016/0017-9310(77)90084-9
22.
Molki
,
M.
,
Astill
,
K. N.
, and
Leal
,
E.
,
1990
, “
Convective Heat-Mass Transfer in the Entrance Region of a Concentric Annulus Having a Rotating Inner Cylinder
,”
Int. J. Heat Fluid Flow
,
11
(
2
), pp.
120
128
. 10.1016/0142-727X(90)90005-V
23.
Hayase
,
T.
,
Humphrey
,
J. A. C.
, and
Greif
,
R.
,
1992
, “
Numerical Calculation of Convective Heat Transfer Between Rotating Coaxial Cylinders With Periodically Embedded Cavities
,”
J. Heat Transf.
,
114
(
3
), pp.
589
597
. 10.1115/1.2911322
24.
Nouri-Borujerdi
,
A.
, and
Nakhchi
,
M. E.
,
2017
, “
Optimization of the Heat Transfer Coefficient and Pressure Drop of Taylor-Couette-Poiseuille Flows Between an Inner Rotating Cylinder and an Outer Grooved Stationary Cylinder
,”
Int. J. Heat Mass Transf.
,
108
, pp.
1449
1459
. 10.1016/j.ijheatmasstransfer.2017.01.014
25.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
. 10.1017/S0022112075001814
26.
Nouri
,
J. M.
, and
Whitelaw
,
J. H.
,
1994
, “
Flow of Newtonian and Non-Newtonian Fluids in a Concentric Annulus With Rotation of the Inner Cylinder
,”
ASME J. Fluid Eng.
,
116
(
4
), pp.
821
827
. 10.1115/1.2911856
You do not currently have access to this content.