Abstract

The combination of corrugated surface and nanofluid techniques can boost thermo-hydraulic performance with the ability to make thermal systems more effective and reliable. In this numerical study, the combined effect of different structures of a semicircle-corrugated channel is investigated and examined, as well as different types of nanofluids on thermal and hydraulic performance in the Reynolds number range from 10,000 to 30,000. With respect to the fluid medium, four kinds of nanoparticles Al2O3, CuO, SiO2, and ZnO are used and investigated. The volume fraction of nanoparticles and the diameter of the particles are in the range of 0–0.08 and 20–80 nm, respectively. The findings show that the geometrical structures of the tested channel have a great effect to improve heat transfer enhancement, approvingly around 2.3–3.7 times that of the smooth channel. Furthermore, the outcomes show a dramatic increase in the heat transfer coefficient as the volume fractions of nanoparticles and Reynolds number are increased, and with the decline of particle size, but it accompanied with the increase of shear stress. Among the nanofluids used here, SiO2–water offers the highest enhancement of heat transfer. For all forms tested here, the rib shape of a semicircle-corrugated channel displays the best thermal-hydraulic performance of 2.84 at a volume fraction of 0.08 and Re = 10,000.

References

References
1.
Piroozfam
,
N.
,
Shafaghi
,
A. H.
, and
Razavi
,
S. E.
,
2018
, “
Numerical Investigation of Three Methods for Improving Heat Transfer in Counter-Flow Heat Exchangers
,”
Int. J. Therm. Sci.
,
133
, pp.
230
239
. 10.1016/j.ijthermalsci.2018.07.033
2.
Ali
,
M. M.
, and
Ramadhyani
,
S.
,
1992
, “
Experiments on Convective Heat Transfer in Corrugated Channels
,”
Exp. Heat Transfer
,
5
(
3
), pp.
175
193
. 10.1080/08916159208946440
3.
Akbarzadeh
,
M.
,
Rashidi
,
S.
, and
Esfahani
,
J. A.
,
2017
, “
Influences of Corrugation Profiles on Entropy Generation, Heat Transfer, Pressure Drop, and Performance in a Wavy Channel
,”
Appl. Therm. Eng.
,
116
, pp.
278
291
. 10.1016/j.applthermaleng.2017.01.076
4.
Bayrak
,
E.
,
Olcay
,
A. B.
, and
Serincan
,
M. F.
,
2019
, “
Numerical Investigation of the Effects of Geometric Structure of Microchannel Heat Sink on Flow Characteristics and Heat Transfer Performance
,”
Int. J. Therm. Sci.
,
135
, pp.
589
600
. 10.1016/j.ijthermalsci.2018.08.030
5.
Mills
,
Z. G.
,
Warey
,
A.
, and
Alexeev
,
A.
,
2016
, “
Heat Transfer Enhancement and Thermal-Hydraulic Performance of Laminar Flows Through Asymmetric Wavy Walled Channels
,”
Int. J. Heat Mass Transfer
,
97
, pp.
450
460
. 10.1016/j.ijheatmasstransfer.2016.02.013
6.
Khoshvaght-Aliabadi
,
M.
, and
Nozan
,
F.
,
2016
, “
Water Cooled Corrugated Minichannel Heat Sink for Electronic Devices: Effect of Corrugation Shape
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
188
196
. 10.1016/j.icheatmasstransfer.2016.05.021
7.
Elshafei
,
E. A. M.
,
Awad
,
M. M.
,
El-Negiry
,
E.
, and
Ali
,
A. G.
,
2010
, “
Heat Transfer and Pressure Drop in Corrugated Channels
,”
Energy
,
35
(
1
), pp.
101
110
. 10.1016/j.energy.2009.08.031
8.
Ramgadia
,
A. G.
, and
Saha
,
A. K.
,
2016
, “
Numerical Study of Fully Developed Unsteady Flow and Heat Transfer in Asymmetric Wavy Channels
,”
Int. J. Heat Mass Transfer
,
102
, pp.
98
112
. 10.1016/j.ijheatmasstransfer.2016.05.131
9.
Naphon
,
P.
,
2007
, “
Heat Transfer Characteristics and Pressure Drop in Channel With Corrugated Upper and Lower Plates
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1516
1524
. 10.1016/j.enconman.2006.11.020
10.
Dizaji
,
H. S.
,
Jafarmadar
,
S.
, and
Mobadersani
,
F.
,
2015
, “
Experimental Studies on Heat Transfer and Pressure Drop Characteristics for New Arrangements of Corrugated Tubes in a Double Pipe Heat Exchanger
,”
Int. J. Therm. Sci.
,
96
, pp.
211
220
. 10.1016/j.ijthermalsci.2015.05.009
11.
Tokgoz
,
N.
,
Tunay
,
T.
, and
Sahin
,
B.
,
2018
, “
Effect of Corrugated Channel Phase Shifts on Flow Structures and Heat Transfer Rate
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
374
391
. 10.1016/j.expthermflusci.2018.08.011
12.
Pehlivan
,
H.
,
Taymaz
,
I.
, and
İslamoğlu
,
Y.
,
2013
, “
Experimental Study of Forced Convective Heat Transfer in a Different Arranged Corrugated Channel
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
106
111
. 10.1016/j.icheatmasstransfer.2013.05.016
13.
Akbarzadeh
,
M.
, and
Maghrebi
,
M. J.
,
2018
, “
Combined Effects of Corrugated Walls and Porous Inserts on Performance Improvement in a Heat Exchanger Channel
,”
Int. J. Therm. Sci.
,
127
, pp.
266
276
. 10.1016/j.ijthermalsci.2018.01.010
14.
Esmaeili
,
M.
,
Sadeghy
,
K.
, and
Moghaddami
,
M.
,
2010
, “
Heat Transfer Enhancement of Wavy Channels Using Al2O3 Nanoparticles
,”
J. Enhanced Heat Transfer
,
17
(
2
), pp.
139
151
. 10.1615/JEnhHeatTransf.v17.i2.30
15.
Ajeel
,
R. K.
,
Salim
,
W. I.
, and
Hasnan
,
K.
,
2018
, “
Impacts of Corrugation Profiles on the Flow and Heat Transfer Characteristics in Trapezoidal Corrugated Channel Using Nanofluids
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
49
(
2
), pp.
170
179
. http://www.akademiabaru.com/doc/ARFMTSV49_N2_P170_179.pdf
16.
Ajeel
,
R. K.
,
Salim
,
W. I.
, and
Hasnan
,
K.
,
2018
, “
Thermal and Hydraulic Characteristics of Turbulent Nanofluids Flow in Trapezoidal-Corrugated Channel: Symmetry and Zigzag Shaped
,”
Case Stud. Therm. Eng.
,
12
, pp.
620
635
. 10.1016/j.csite.2018.08.002
17.
Ajeel
,
R. K.
,
Salim
,
W. I.
, and
Hasnan
,
K.
,
2018
, “
Thermal Performances Comparison in Various Types of Trapezoidal Corrugated Channel Using Nanofluids
,”
Int. Rev. Mech. Eng.
,
12
(
8
), pp.
672
683
. 10.15866/ireme.v12i8.15114
18.
Ajeel
,
R. K.
,
Salim
,
W. S.
, and
Hasnan
,
K.
,
2018
, “
Numerical Investigation of Flow and Heat Transfer Enhancement in a Semicircle Zigzag Corrugated Channel Using Nanofluids
,”
Int. J. Heat Technol.
,
36
(
4
), pp.
1292
1303
. 10.18280/ijht.360418
19.
Ajeel
,
R. K.
,
Salim
,
W. S.
, and
Hasnan
,
K.
,
2019
, “
Comparative Study of the Thermal Performance of Corrugated Channels Using ZnO–Water Nanofluid
,”
J. Thermophys. Heat Transfer
,
33
(
2
), pp.
508
516
. 10.2514/1.T5497
20.
Ajeel
,
R. K.
,
Salim
,
W. S.
, and
Hasnan
,
K.
,
2019
, “
Thermal Performance Comparison of Various Corrugated Channels Using Nanofluid: Numerical Study
,”
Alexandria Eng. J.
,
58
(
1
), pp.
75
87
. 10.1016/j.aej.2018.12.009
21.
Naphon
,
P.
, and
Wiriyasart
,
S.
,
2018
, “
Pulsating Flow and Magnetic Field Effects on the Convective Heat Transfer of TiO2–Water Nanofluids in Helically Corrugated Tube
,”
Int. J. Heat Mass Transfer
,
125
, pp.
1054
1060
. 10.1016/j.ijheatmasstransfer.2018.05.015
22.
Akbarzadeh
,
M.
,
Rashidi
,
S.
,
Karimi
,
N.
, and
Omar
,
N.
,
2019
, “
First and Second Laws of Thermodynamics Analysis of Nanofluid Flow Inside a Heat Exchanger Duct With Wavy Walls and Porous Insert
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
177
194
. 10.1007/s10973-018-7044-y
23.
Aminfar
,
H.
,
Mohammadpourfard
,
M.
, and
Ahangar Zonouzi
,
S.
,
2014
, “
Hydrothermal Behavior of a Ferrafluid in a Corrugated Channel in the Presence of a Magnetic Field
,”
Heat Transfer Asian Res.
,
43
(
1
), pp.
80
92
. 10.1002/htj.21060
24.
Ijaz
,
N.
,
Zeeshan
,
A.
,
Bhatti
,
M. M.
, and
Ellahi
,
R.
,
2018
, “
Analytical Study on Liquid–Solid Particles Interaction in the Presence of Heat and Mass Transfer Through a Wavy Channel
,”
J. Mol. Liq.
,
250
, pp.
80
87
. 10.1016/j.molliq.2017.11.123
25.
Ebrahimnia-Bajestan
,
E.
,
Moghadam
,
M. C.
,
Niazmand
,
H.
,
Daungthongsuk
,
W.
, and
Wongwises
,
S.
,
2016
, “
Experimental and Numerical Investigation of Nanofluids Heat Transfer Characteristics for Application in Solar Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
92
, pp.
1041
1052
. 10.1016/j.ijheatmasstransfer.2015.08.107
26.
Alfaryjat
,
A. A.
,
Mohammed
,
H. A.
,
Adam
,
N. M.
,
Stanciu
,
D.
, and
Dobrovicescu
,
A.
,
2018
, “
Numerical Investigation of Heat Transfer Enhancement Using Various Nanofluids in Hexagonal Microchannel Heat Sink
,”
Therm. Sci. Eng. Prog.
,
5
, pp.
252
262
. 10.1016/j.tsep.2017.12.003
27.
Fotukian
,
S. M.
, and
Esfahany
,
M. N.
,
2010
, “
Experimental Investigation of Turbulent Convective Heat Transfer of Dilute γ-Al2O3/Water Nanofluid Inside a Circular Tube
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
606
612
. 10.1016/j.ijheatfluidflow.2010.02.020
28.
Khoshvaght-Aliabadi
,
M.
,
Tatari
,
M.
, and
Salami
,
M.
,
2018
, “
Analysis on Al2O3/Water Nanofluid Flow in a Channel by Inserting Corrugated/Perforated Fins for Solar Heating Heat Exchangers
,”
Renew. Energy
,
115
, pp.
1099
1108
. 10.1016/j.renene.2017.08.092
29.
Abed
,
A. M.
,
Alghoul
,
M. A.
,
Sopian
,
K.
,
Mohammed
,
H. A.
, and
Al-Shamani
,
A. N.
,
2015
, “
Design Characteristics of Corrugated Trapezoidal Plate Heat Exchangers Using Nanofluids
,”
Chem. Eng. Process. Process Intensif.
,
87
, pp.
88
103
. 10.1016/j.cep.2014.11.005
30.
Ajeel
,
R. K.
,
Salim
,
W. I.
, and
Hasnan
,
K.
,
2019
, “
Design Characteristics of Symmetrical Semicircle-Corrugated Channel on Heat Transfer Enhancement With Nanofluid
,”
Int. J. Mech. Sci.
,
151
, pp.
236
250
. 10.1016/j.ijmecsci.2018.11.022
31.
Ajeel
,
R. K.
,
Salim
,
W. I.
, and
Hasnan
,
K.
,
2019
, “
Heat Transfer Enhancement in Semicircle Corrugated Channel: Effect of Geometrical Parameters and Nanofluid
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
53
(
1
), pp.
82
94
. http://www.akademiabaru.com/doc/ARFMTSV53_N1_P82_94.pdf
32.
Ajeel
,
R. K.
,
Salim
,
W. I.
, and
Hasnan
,
K.
,
2019
, “
Influences of Geometrical Parameters on the Heat Transfer Characteristics Through Symmetry Trapezoidal-Corrugated Channel Using SiO2–Water Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
101
, pp.
1
9
. 10.1016/j.icheatmasstransfer.2018.12.016
33.
Schliehiting
,
H.
,
2000
,
Boundary-Layer Theory
, Vol.
8
.
Springer, Berlin, Heidelberg
,
New York
.
34.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
. 10.1016/0094-4548(74)90150-7
35.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Kulkarni
,
D. P.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4607
4618
. 10.1016/j.ijheatmasstransfer.2010.06.032
You do not currently have access to this content.