Abstract

This paper reported the mathematical modeling and numerical simulation of natural convection flow of Cu/water nanofluid in a square enclosure using the lattice Boltzmann method (LBM). The cavity is heated from below by heat source and cooled by the top wall. The vertical walls are adiabatic. After validating the numerical code against the numerical and experimental data, simulations were performed for different Rayleigh numbers (104–0.5 × 107), nanoparticles volume fractions (0–8%), and cavity inclination angle (0 deg–90 deg). The effects of the studied parameters on the streamlines, on isotherms distributions within the enclosure, and on the local and average Nusselt numbers are investigated. It was found that heat transfer and fluid flow structure depend closely on the nanoparticle concentration. Results show differences in stream separation between a base fluid and the nanofluid. Also, adding small nanoparticles fractions, less than 6%, to the base fluid enhances the heat transfer for higher Rayleigh numbers and cavity inclination angle less than 30 deg. It is concluded that the optimal dilute suspension of copper nanoparticles can be applied as a passive way to enhance heat transfer in natural convection engineering applications.

References

1.
Tiwari
,
R. K.
, and
Das
,
M. K.
,
2007
, “
Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
2002
2018
. 10.1016/j.ijheatmasstransfer.2006.09.034
2.
Choi
,
U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles, Developments and Application of Non-Newtonian Flows
,”
ASME J. Heat Transfer
,
66
, pp.
99
105
.
3.
Jafari
,
M.
,
Farhadi
,
M.
, and
Sedighi
,
K.
,
2014
, “
Heat Transfer Enhancement in a Corrugated Channel Using Oscillating Flow and Nanoparticles: An LBM Approach
,”
Numer. Heat Transfer Part A
,
65
(
6
), pp.
601
626
. 10.1080/10407782.2013.836023
4.
Pelević
,
N.
, and
Van der Meer
,
T. H.
,
2012
, “
Numerical Investigation of the Effective Thermal Conductivity of Nano-Fluids Using the Lattice Boltzmann Model
,”
Int. J. Therm. Sci.
,
62
, pp.
154
159
. 10.1016/j.ijthermalsci.2011.09.022
5.
Kalidasan
,
K.
, and
Kanna
,
P. R.
,
2016
, “
Effective Utilization of MWCNT–Water Nanofluid for the Enhancement of Laminar Natural Convection Inside the Open Square Enclosure
,”
J. Taiwan Inst. Chem. Eng.
,
65
, pp.
331
340
. 10.1016/j.jtice.2016.05.035
6.
Miroshnichenko
,
I. V.
,
Sheremet
,
M. A.
,
Oztop
,
H. F.
, and
Abu-Hamdeh
,
N.
,
2018
, “
Natural Convection of Al2O3/H2O Nanofluid in an Open Inclined Cavity With a Heat-Generating Element
,”
Int. J. Heat Mass Transfer
,
126
, pp.
184
191
. 10.1016/j.ijheatmasstransfer.2018.05.146
7.
Kolsi
,
L.
,
Alrashed
,
A. A.
,
Al-Salem
,
K.
,
Oztop
,
H. F.
, and
Borjini
,
M. N.
,
2017
, “
Control of Natural Convection via Inclined Plate of CNT-Water Nanofluid in an Open Sided Cubical Enclosure Under Magnetic Field
,”
Int. J. Heat Mass Transfer
,
111
, pp.
1007
1018
. 10.1016/j.ijheatmasstransfer.2017.04.069
8.
Mansour
,
M. A.
, and
Ahmed
,
S. E.
,
2015
, “
A Numerical Study on Natural Convection in Porous Media-Filled an Inclined Triangular Enclosure With Heat Sources Using Nanofluid in the Presence of Heat Generation Effect
,”
Eng. Sci. Technol. Int. J.
,
18
(
3
), pp.
485
495
. 10.1016/j.jestch.2015.03.007
9.
Musik
,
P.
, and
Jaroensutasinee
,
K.
,
2004
, “
Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation
,”
Walailak J. Sci. Technol.
,
1
(
1
), pp.
53
70
. 10.2004/wjst.v1i1.200
10.
Mahmoudi
,
A.
,
Mejri
,
I.
,
Abbassi
,
M. A.
, and
Omri
,
A.
,
2015
, “
Analysis of MHD Natural Convection in a Nanofluid-Filled Open Cavity With Non Uniform Boundary Condition in the Presence of Uniform Heat Generation/Absorption
,”
Powder Technol.
,
269
, pp.
275
289
. 10.1016/j.powtec.2014.09.022
11.
Mliki
,
B.
,
Abbassi
,
M. A.
,
Omri
,
A.
, and
Zeghmati
,
B.
,
2015
, “
Augmentation of Natural Convective Heat Transfer in Linearly Heated Cavity by Utilizing Nanofluids in the Presence of Magnetic Field and Uniform Heat Generation/Absorption
,”
Powder Technol.
,
284
, pp.
312
325
. 10.1016/j.powtec.2015.06.068
12.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
. 10.1016/S0017-9310(03)00156-X
13.
Hussein
,
A. M.
,
Sharma
,
K. V.
,
Bakar
,
R. A.
, and
Kadirgama
,
K.
,
2014
, “
A Review of Forced Convection Heat Transfer Enhancement and Hydrodynamic Characteristics of a Nanofluid
,”
Renew. Sustain. Energ. Rev.
,
29
, pp.
734
743
. 10.1016/j.rser.2013.08.014
14.
Faraji
,
H.
,
Faraji
,
M.
, and
El Alami
,
M.
,
2019
, “
Numerical Study of the Transient Melting of Nano-Enhanced Phase Change Material
,”
Heat Transfer Eng. (in press)
.
15.
Faraji
,
H.
,
Faraji
,
M.
, and
El Alami
,
M.
,
2020
, “
Numerical Survey of the Melting Driven Natural Convection Using Generation Heat Source: Application to the Passive Cooling of Electronics Using Nano-Enhanced Phase Change Material
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p.
021005
. 10.1115/1.4044167
16.
Faraji
,
M.
,
2017
, “
Investigation of the Melting Coupled Natural Convection of Nano Phase Change Material: A Fan Less Cooling of Heat Sources
,”
Fluid Dyn. Mater. Process.
,
13
, pp.
19
36
.
17.
Lai
,
F. H.
, and
Yang
,
Y. T.
,
2011
, “
Lattice Boltzmann Simulation of Natural Convection Heat Transfer of Al2O3/Water Nanofluids in a Square Enclosure
,”
Int. J. Therm. Sci.
,
50
(
10
), pp.
1930
1941
. 10.1016/j.ijthermalsci.2011.04.015
18.
Kefayati
,
G. R.
,
Hosseinizadeh
,
S. F.
,
Gorji
,
M.
, and
Sajjadi
,
H.
,
2011
, “
Lattice Boltzmann Simulation of Natural Convection in Tall Enclosures Using Water/SiO2 Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
38
(
6
), pp.
798
805
. 10.1016/j.icheatmasstransfer.2011.03.005
19.
Rehhali
,
K.
,
Hasnaoui
,
M.
,
Raji
,
A.
,
El Mansouri
,
A.
,
Beji
,
H.
,
Amahmid
,
A.
, and
Dahani
,
Y.
,
2019
, “
Lattice Boltzmann Approach for Natural Convection and Radiation in a Tilted Square Cavity
,”
J. Thermophys. Heat Transfer
,
33
(
2
), pp.
322
333
. 10.2514/1.T5527
20.
Rahmati
,
A. R.
, and
Tahery
,
A. A.
,
2018
, “
Numerical Study of Nanofluid Natural Convection in a Square Cavity With a Hot Obstacle Using Lattice Boltzmann Method
,”
Alexandria Eng. J.
,
57
(
3
), pp.
1271
1286
. 10.1016/j.aej.2017.03.030
21.
Abouricha
,
N.
,
El Alami
,
M.
, and
Gounni
,
A.
,
2019
, “
Lattice Boltzmann Modeling of Natural Convection in a Large-Scale Cavity Heated From Below by a Centered Source
,”
ASME J. Heat Transfer
,
141
(
6
), p.
062501
. 10.1115/1.4042905
22.
Sajjadi
,
H.
,
Abbassi
,
M. B.
, and
Kefayati
,
G. R.
,
2013
, “
Lattice Boltzmann Simulation of Turbulent Natural Convection in a Square Cavity Using Cu/Water Nanofluid
,”
J. Mech. Sci. Technol.
,
27
(
8
), pp.
2341
2349
. 10.1007/s12206-013-0618-5
23.
Alouah
,
M.
,
Hasnaoui
,
M.
,
Amahmid
,
A.
, and
Rehhali
,
K.
,
2017
, “
Lattice-Boltzmann Modeling of Natural Convection in a Cavity With a Heated Plate Inside
,”
Energy Procedia
,
139
, pp.
140
146
. 10.1016/j.egypro.2017.11.187
24.
Gibanov
,
N.
, and
Sheremet
,
M.
,
2017
, “
Unsteady Natural Convection in a Cubical Cavity With a Triangular Heat Source
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
8
), pp.
1795
1813
. 10.1108/HFF-06-2016-0234
25.
Li
,
Z.
,
Yang
,
M.
, and
Zhang
,
Y.
,
2016
, “
Lattice Boltzmann Method Simulation of 3-D Natural Convection With Double MRT Model
,”
Int. J. Heat Mass Transfer
,
94
, pp.
222
238
. 10.1016/j.ijheatmasstransfer.2015.11.042
26.
Bondareva
,
N. B.
,
2019
, “
Numerical Simulation of Natural Convection Melting in 2D and 3D Enclosures
,”
J. Therm. Eng.
,
5
(
1
), pp.
51
61
. 10.18186/thermal.513015
27.
Mohamad
,
A. A.
,
2011
,
Lattice Boltzmann Method Fundamentals and Engineering Applications With Computer Codes
,
Springer
,
London
.
28.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
. 10.1146/annurev.fluid.30.1.329
29.
Maxwell
,
J. A.
,
1904
,
Treatise on Electricity and Magnetism
,
Oxford University Press
,
Cambridge, UK
.
30.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.-W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
. 10.1063/1.3245330
31.
Einstein
,
A.
,
1956
,
Investigations on the Theory of the Brownian Movement
,
Courier Corporation
,
North Chelmsford, MA
.
32.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Maré
,
T.
,
Boucher
,
S.
, and
Mintsa
,
H. A.
,
2007
, “
Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1492
1506
. 10.1016/j.ijheatfluidflow.2007.02.004
33.
de Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
. 10.1002/fld.1650030305
34.
Markatos
,
N. C.
, and
Pericleous
,
K. A.
,
1984
, “
Laminar and Turbulent Natural Convection in an Enclosed Cavity
,”
Int. J. Heat Mass Transfer
,
27
(
5
), pp.
755
772
. 10.1016/0017-9310(84)90145-5
35.
Krane
,
R. J.
, and
Jessee
,
J.
,
1983
, “
Some Detailed Field Measurements for a Natural Convection Flow in a Vertical Square Enclosure
,”
Proceedings of the First ASME-JSME Thermal Engineering Joint Conference
,
Honolulu, HI
,
Mar. 20–24
, Vol.
1
, pp.
323
329
.
36.
Tsai
,
W. B.
,
Kao
,
J. Y.
,
Wu
,
T. M.
, and
Cheng
,
W. T.
,
2016
, “
Dispersion of Titanium Oxide Nanoparticles in Aqueous Solution With Anionic Stabilizer via Ultrasonic Wave
,”
J. Nanopart.
10.1155/2016/6539581
You do not currently have access to this content.