Abstract

A transient study of the cooling process inside a cabinet is presented in this work. Computational fluid dynamics (CFD) is used to obtain the transient temperature of the air inside a small cabinet. Three cooling levels, named Case 1, Case 2, and Case 3, were studied under different lapses of time and operational conditions. The temperature of the evaporator plate and the temperature of the room change with time through the implementation of user-defined functions (UDFs). The buoyancy effects that occur inside the cabinet (natural convection) were modeled using the approximation of all the properties fitted to temperature polynomials (PFTP). The transient temperature of the air inside the cabinet was obtained, until the second ON/OFF stage is reached, for the three cases studied. The prediction of the transient temperature of the air inside the small cabinet was validated with experimental data. The average relative errors of the transient temperatures of the air inside the cabinet were 0.49%, 0.19%, and 0.13% for Case 1, Case 2, and Case 3, respectively. The behavior of the temperature and velocity distributions of the air inside the cabinet for the ON and OFF stages is obtained. Finally, a better range of the temperature for the preservation of food, medicines, and biological matter is obtained with an increase in the thickness of the insulation material. An increment of 14.9% of the removed energy was obtained inside the cabinet with 12 cm of the insulation material, and this increment is related to the case with no insulation material. The results of this work could help in improving the design and performance of the cabinets in further works.

References

1.
Platen
,
B. C. V.
, and
Munters
,
C. G.
,
1928
,
Refrigerator
, US Patent No. 1,685,764.
2.
Srikhirin
,
P.
, and
Aphornratana
,
S.
,
2002
, “
Investigation of a Diffusion Absorption Refrigerator
,”
Appl. Therm. Eng.
,
22
(
11
), pp.
1181
1193
. 10.1016/S1359-4311(02)00049-2
3.
Srikhirin
,
P.
,
Aphornratana
,
S.
, and
Chungpaibulpatana
,
S.
,
2001
, “
A Review of Absorption Refrigeration Technologies
,”
Renew. Sust. Energ. Rev.
,
5
(
4
), pp.
343
372
. 10.1016/S1364-0321(01)00003-X
4.
Chen
,
J.
,
Kim
,
K. J.
, and
Herold
,
K. E.
,
1996
, “
Performance Enhancement of a Diffusion-Absorption Refrigerator
,”
Int. J. Refrig.
,
19
(
3
), pp.
208
218
. 10.1016/0140-7007(96)87215-X
5.
Mota-Babiloni
,
A.
,
Navarro-Esbrí
,
J.
,
Barragán-Cervera
,
A.
,
Molés
,
F.
,
Peris
,
B.
, and
Verdú
,
G.
,
2015
, “
Commercial Refrigeration—An Overview of Current Status
,”
Int. J. Refrig.
,
57
(
1
), pp.
186
196
. 10.1016/j.ijrefrig.2015.04.013
6.
Gschrey
,
B.
,
Schwarz
,
W.
,
Elsner
,
C.
, and
Engelhardt
,
R.
,
2011
, “
High Increase of Global F-Gas Emissions Until 2050
,”
Greenhouse Gas Meas. Manag.
,
1
(
2
), pp.
85
92
. 10.1080/20430779.2011.579352
7.
Yusufoglu
,
Y.
,
Apaydin
,
T.
,
Yilmaz
,
S.
, and
Paksoy
,
H. O.
,
2015
, “
Improving Performance of Household Refrigerators by Incorporating Phase Change Materials
,”
Int. J. Refrig.
,
57
(
1
), pp.
173
185
. 10.1016/j.ijrefrig.2015.04.020
8.
Marques
,
A. C.
,
Davies
,
G. F.
,
Maidment
,
G. G.
,
Evans
,
J. A.
, and
Wood
,
I. D.
,
2014
, “
Novel Design and Performance Enhancement of Domestic Refrigerators With Thermal Storage
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
511
519
. 10.1016/j.applthermaleng.2013.11.043
9.
Alzuwaid
,
F.
,
Ge
,
Y. T.
,
Tassou
,
S. A.
,
Raeisi
,
A.
, and
Gowreesunker
,
L.
,
2015
, “
The Novel Use of Phase Change Materials in a Refrigerated Display Cabinet: An Experimental Investigation
,”
Appl. Therm. Eng.
,
75
(
1
), pp.
770
778
. 10.1016/j.applthermaleng.2014.10.028
10.
Björk
,
E.
,
Palm
,
B.
, and
Nordenberg
,
J.
,
2010
, “
Thermographic Study of the On–Off Behavior of an All-Refrigerator
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
1974
1984
. 10.1016/j.applthermaleng.2010.04.032
11.
Özşen
,
M.
,
Kumlutas
,
D.
,
Haktan
,
K. Z.
, and
Avci
,
H.
,
2012
, “
Investigation of Design Parameters of a Domestic Refrigerator by Artificial Neural Networks and Numerical Simulations
,”
Int. J. Refrig.
,
35
(
6
), pp.
1678
1689
. 10.1016/j.ijrefrig.2012.02.011
12.
Laguerre
,
O.
,
Duret
,
S.
,
Hoang
,
H. M.
, and
Flick
,
D.
,
2014
, “
Using Simplified Models of Cold Chain Equipment to Assess the Influence of Operating Conditions and Equipment Design on Cold Chain Performance
,”
Int. J. Refrig.
,
47
(
1
), pp.
120
133
. 10.1016/j.ijrefrig.2014.07.023
13.
Belman-Flores
,
J. M.
,
Gallegos-Muñoz
,
A.
, and
Puente-Delgado
,
A.
,
2014
, “
Analysis of the Temperature Stratification of a No-Frost Domestic Refrigerator With Bottom Mount Configuration
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
299
307
. 10.1016/j.applthermaleng.2014.01.022
14.
Belman-Flores
,
J. M.
, and
Gallegos-Muñoz
,
A.
,
2016
, “
Analysis of the Flow and Temperature Distribution Inside the Compartment of a Small Refrigerator
,”
Appl. Therm. Eng.
,
106
(
1
), pp.
743
752
. 10.1016/j.applthermaleng.2016.06.065
15.
Wang
,
L.
,
Zhang
,
L.
, and
Lian
,
G.
,
2015
, “
A CFD Simulation of 3D Air Flow and Temperature Variation in Refrigeration Cabinet
,”
Procedia Eng.
,
102
(
1
), pp.
1599
1611
. 10.1016/j.proeng.2015.01.296
16.
Alfaro-Ayala
,
J. A.
,
Uribe-Ramírez
,
A. R.
,
Minchaca-Mojica
,
J. I.
,
Ramírez-Minguela
,
J. d. J.
,
Alvarado-Alcalá
,
B. U.
, and
López-Núñez
,
O. A.
,
2017
, “
Numerical Prediction of the Unsteady Temperature Distribution in a Cooling Cabinet
,”
Int. J. Refrig.
,
73
(
1
), pp.
235
245
. 10.1016/j.ijrefrig.2016.09.022
17.
Jo
,
S. W.
,
Sherif
,
S. A.
, and
Lear
,
W. E.
,
2014
, “
Numerical Simulation of Saturated Flow Boiling Heat Transfer of Ammonia/Water Mixture in Bubble Pumps for Absorption–Diffusion Refrigerators
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
), p.
011007
. 10.1115/1.4025091
18.
Wang
,
Q.
,
Gong
,
L.
,
Wang
,
J. P.
,
Sun
,
T. F.
,
Cui
,
K.
, and
Chen
,
G. M.
,
2011
, “
A Numerical Investigation of a Diffusion Absorption Refrigerator Operating With the Binary Refrigerant for Low Temperature Applications
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1763
1769
. 10.1016/j.applthermaleng.2011.02.021
19.
Starace
,
G.
, and
De Pascalis
,
L.
,
2012
, “
An Advanced Analytical Model of the Diffusion Absorption Refrigerator Cycle
,”
Int. J. Refrig.
,
35
(
3
), pp.
605
612
. 10.1016/j.ijrefrig.2011.11.007
20.
Starace
,
G.
, and
De Pascalis
,
L.
,
2013
, “
An Enhanced Model for the Design of Diffusion Absorption Refrigerators
,”
Int. J. Refrig.
,
36
(
5
), pp.
1495
1503
. 10.1016/j.ijrefrig.2013.02.016
21.
Yildiz
,
A.
,
Ersöz
,
M. A.
, and
Gözmen
,
B.
,
2014
, “
Effect of Insulation on the Energy and Exergy Performances in Diffusion Absorption Refrigeration (DAR) Systems
,”
Int. J. Refrig.
,
44
(
1
), pp.
161
167
. 10.1016/j.ijrefrig.2014.04.021
22.
Belman-Flores
,
J. M.
,
Rodríguez-Muñoz
,
J. L.
,
Rubio-Maya
,
C.
,
Ramírez-Minguela
,
J. J.
, and
Perez-García
,
V.
,
2014
, “
Energetic Analysis of a Diffusion-Absorption System: A Bubble Pump Under Geometrical and Operational Conditions Effects
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
1
10
. 10.1016/j.applthermaleng.2014.06.034
23.
Ezzine
,
N. B.
,
Garma
,
R.
, and
Bellagi
,
A.
,
2010
, “
A Numerical Investigation of a Diffusion-Absorption Refrigeration Cycle Based on R124-DMAC Mixture for Solar Cooling
,”
Energy
,
35
(
5
), pp.
1874
1883
. 10.1016/j.energy.2009.12.032
24.
Ezzine
,
N. B.
,
Garma
,
R.
,
Bourouis
,
M.
, and
Bellagi
,
A.
,
2010
, “
Experimental Studies on Bubble Pump Operated Diffusion Absorption Machine Based on Light Hydrocarbons for Solar Cooling
,”
Renew. Energ.
,
35
(
2
), pp.
464
470
. 10.1016/j.renene.2009.07.026
25.
Sözen
,
A.
,
Özbaş
,
E.
,
Menlik
,
T.
,
Çakır
,
M. T.
,
Gürü
,
M.
, and
Boran
,
K.
,
2014
, “
Improving the Thermal Performance of Diffusion Absorption Refrigeration System With Alumina Nanofluids: An Experimental Study
,”
Int. J. Refrig.
,
44
(
1
), pp.
73
80
. 10.1016/j.ijrefrig.2014.04.018
26.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer
,
McGraw-Hill Companies, Inc
.,
New York
.
27.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
.
28.
ANSYS, Inc.
,
2015
,
Fluent, ANSYS-FLUENT User’s Guide. Release 15.0
,
ANSYS, Inc
.,
Canonsburg, PA
.
You do not currently have access to this content.