Abstract

Isolated cold aisle airflow distribution is a transitional form from non-isolated airflow distribution to closed cold aisle airflow distribution. With the increase of the power of racks, cooling failure may happen in the layout of the isolated cold aisle. This paper presents the study on cooling performance of the racks which are improved through bottom ventilating reform and adjustment. Inlet/outlet air temperature and mass flow rate of the racks are investigated in detail under conditions of various bottom ventilated areas and various porosities of the raised floor. The characteristics of airflow distribution are contrastively analyzed through calculating indexes of the thermal environment of data centers. Results show that adequate ventilation through the bottom of the racks is good for improvement of the state of airflow distribution. There is an optimization range (0.1–0.3 m and 0.05–0.15 m, respectively) of the ventilated area at the bottom of the racks. And high porosity (above 50%) of the ventilated area can reduce the inlet and outlet temperatures of the racks and the racks in different positions have a better temperature uniformity. In conclusion, bottom ventilation of racks is a feasible plan to improve airflow distribution, and schemes of ventilated area and porosity of corresponding raised floor should be designed respectively under consideration of the layout of racks and AC.

References

References
1.
Cho
,
J.
,
Yang
,
J.
, and
Park
,
W.
,
2014
, “
Evaluation of air Distribution System’s Airflow Performance for Cooling Energy Savings in High-Density Data Centers
,”
Energy Build.
,
68
(
Part A
), pp.
270
279
. 10.1016/j.enbuild.2013.09.013
2.
Cho
,
J.
,
Lim
,
T.
, and
Kim
,
B. S.
,
2009
, “
Measurements and Predictions of the Air Distribution Systems in High Compute Density (Internet) Data Centers
,”
Energy Build.
,
41
(
10
), pp.
1107
1115
. 10.1016/j.enbuild.2009.05.017
3.
Schmidt
,
R.
,
Vallury
,
A.
, and
Madhusudan
,
I.
,
2011
, “
Energy Savings Through hot and Cold Aisle Containment Configurations for air Cooled Servers in Data Centers
,”
Proceedings of ASME Pacific Rim Technical Conference on Packaging and Integration of Electronic and Photonic Systems
,
Portland
,
July 6–8
, pp.
611
616
.
4.
Arghode
,
V. K.
, and
Joshi
,
Y.
,
2015
, “
Experimental Investigation of Air Flow Through a Perforated Tile in a Raised Floor Data Center
,”
ASME J. Electron. Packag.
,
137
(
1
), pp.
1
10
. 10.1115/1.4028835
5.
Sundaralingam
,
V.
,
Arghode
,
V. K.
, and
Joshi
,
Y.
,
2013
, “
Experimental Characterization of Cold Aisle Containment for Data Centers
,”
Proceedings of 2013 Twenty Ninth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
,
San Jose, CA
,
Mar. 17–21
, pp.
223
230
.
6.
Sundaralingam
,
V.
,
Arghode
,
V. K.
,
Joshi
,
Y.
, and
Phelps
,
W.
,
2015
, “
Experimental Characterization of Various Cold Aisle Containment Configurations for Data Centers
,”
ASME J. Electron. Packag.
,
137
(
1
), pp.
1
8
. 10.1115/1.4028520
7.
Nada
,
S. A.
, and
Elfeky
,
K. E.
,
2016
, “
Experimental Investigations of Thermal Managements Solutions in Data Centers Buildings for Different Arrangements of Cold Aisles Containments
,”
J. Build. Eng.
,
5
, pp.
41
49
. 10.1016/j.jobe.2015.11.001
8.
Nada
,
S. A.
, and
Said
,
M. A.
,
2017
, “
Effect of CRAC Units Layout on Thermal Management of Data Center
,”
Appl. Therm. Eng.
,
118
, pp.
339
344
. 10.1016/j.applthermaleng.2017.03.003
9.
Patankar
,
S. V.
,
2010
, “
Airflow and Cooling in a Data Center
,”
ASME J. Heat Transfer
,
132
(
7
), p.
073001
. 10.1115/1.4000703
10.
Joshi
,
Y.
, and
Kumar
,
P.
,
2012
,
Energy Efficient Thermal Management of Data Centers
,
Springer
,
Berlin
, pp.
39
136
.
11.
Nada
,
S. A.
, and
Said
,
M. A.
,
2017
, “
Comprehensive Study on the Effects of Plenum Depths on air Flow and Thermal Managements in Data Centers
,”
Int. J. Therm. Sci.
,
122
, pp.
302
312
. 10.1016/j.ijthermalsci.2017.09.001
12.
Zhang
,
K.
,
Zhang
,
X.
,
Li
,
S.
, and
Jin
,
X.
,
2014
, “
Experimental Study on the Characteristics of Supply air for UFAD System with Perforated Tiles
,”
Energy Build.
,
80
, pp.
1
6
. 10.1016/j.enbuild.2014.05.007
13.
Zhang
,
K.
,
Zhang
,
X.
, and
Li
,
S.
,
2016
, “
Simplified Model for Desired Airflow Rate in Underfloor air Distribution (UFAD) Systems
,”
Appl. Therm. Eng.
,
93
, pp.
244
250
. 10.1016/j.applthermaleng.2015.09.053
14.
Fakhim
,
B.
,
Srinarayana
,
N.
, and
Steven
,
M. B.
,
2010
, “
Armfield W., Effect of Under-Floor Blockages and Perforated Tile Openings on the Performance of Raised-Floor Data Centres
,”
Proceedings of Auckland: 17th Australasian Fluid Mechanics Conference
,
Auckland, New Zealand
,
Dec. 5–9
.
15.
Nada
,
S. A.
,
Elfeky
,
K. E.
,
Attia
,
A. M. A.
, and
Alshaer
,
W. G.
,
2017
, “
Experimental Parametric Study of Servers Cooling Management in Data Centers Buildings
,”
Heat Mass Transfer
,
53
(
6
), pp.
2083
2097
. 10.1007/s00231-017-1966-y
16.
Wang
,
I. N.
,
Tsui
,
Y. Y.
, and
Wang
,
C. C.
,
2015
, “
Improvements of Airflow Distribution in a Container Data Center
,”
Energy Procedia
,
75
, pp.
1819
1824
. 10.1016/j.egypro.2015.07.153
17.
Nada
,
S. A.
,
Attia
,
A. M. A.
, and
Elfeky
,
K. E.
,
2016
, “
Experimental Study of Solving Thermal Heterogeneity Problem of Data Center Servers
,”
Appl. Therm. Eng.
,
109
(
Part A
), pp.
466
474
. 10.1016/j.applthermaleng.2016.08.097
18.
Nada
,
S. A.
, and
Elfeky
,
K. E.
,
2017
, “
Effects of Servers’ Rack Location and Power Loading Configurations on the Thermal Management of Data Center Racks’ Array
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
044501
. 10.1115/1.4036009
19.
Huang
,
Z. L.
,
Dong
,
K. J.
,
Su
,
L.
, and
Liu
,
T. Q.
,
2018
, “
Numerical Simulation and Disaster Tolerance Analysis of Rack-Level Cooling System in Data Centers
,”
Advances in New and Renewable Energy
,
6
(
1
), pp.
76
82
. 10.3969/j.issn.2095-560X.2018.01.012
20.
Huang
,
Z. L.
,
Dong
,
K.
,
Sun
,
Q.
,
Su
,
L.
, and
Liu
,
T. Q.
,
2017
, “
Numerical Simulation and Comparative Analysis of Different Airflow Distributions in Data Center
,”
Procedia Eng.
,
205
(
1
), pp.
2378
2385
. 10.1016/j.proeng.2017.09.854
21.
Sharma
,
R. K.
,
Bash
,
C. E.
, and
Patel
,
C. D.
,
2002
, “
Dimensionless Parameters for Evaluation of Thermal Design and Performance of Large-Scale Data Centers
,”
Proceedings of 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
,
Louis, MO
,
June 24–26
,
3091
, pp.
1
11
.
22.
Bash
,
C. E.
,
Patel
,
C.
, and
Sharma
,
R. K.
,
2003
, “
Efficient Thermal Management of Data Centers—Immediate and Long-Term Research Needs
,”
HVAC&R Res.
,
9
(
2
), pp.
137
152
. 10.1080/10789669.2003.10391061
23.
Herrlin
,
M. K.
,
2008
, “
Airflow and Cooling Performance of Data Centers: Two Performance Metrics
,”
ASHARE Trans.
,
114
(
Part 2
), pp.
182
188
.
24.
Herrlin
,
M. K.
,
2005
, “
Rack Cooling Effectiveness in Data Centers and Telecom Central Offices: the Rack Cooling Index (RCI)
,”
ASHRAE Trans.
,
111
(
Part 2
), pp.
725
732
.
You do not currently have access to this content.