Abstract

A complete parametric study of bagasse pellets under high-temperature steam gasification in relevant industrial operating conditions was investigated. Regarding thermal behaviors, the maximum rate of weight loss (Rmax = 0.55%/°C) occurred at the temperature Tmax = 305 °C. The final pyrolysis temperature and heating rate were proportional to the mechanical strength, the bulk density, as well as the char yield and energy yield. However, the changes were not significant after 600 °C. Regarding steam gasification kinetics, an increase from 850 to 1000 °C and from 0.1 to 0.4 atm accelerated 10 times and two times the conversion rate of bagasse pellet char, respectively. Gasification kinetics of a pellet char produced at 2000 °Cmin−1 was 1.4 higher compared with a pellet char produced at 5 °C min−1. An empirical model that takes into account all the changes in the reactive surface could successfully predict the conversion of the bagasse pellet char during high-temperature steam gasification. Experimental results and the kinetic model proposed could be useful for the calculation of industrial or academic codes, necessary for the conception of new efficient gasifiers.

References

1.
Shahbandeh
,
M.
Global Sugar Cane Production 2016-2027 | Statista
,”
last edited October 26
,
2018
, https://www.statista.com/statistics/445636/global-sugar-cane-production-forecast/
2.
Nikodinovic-Runic
,
J.
,
Guzik
,
M.
,
Kenny
,
S. T.
,
Babu
,
R.
,
Werker
,
A.
, and
Connor
,
O. K. E.
,
2013
, “Chapter Four—Carbon-Rich Wastes as Feedstocks for Biodegradable Polymer (Polyhydroxyalkanoate) Production Using Bacteria,”
Advances in Applied Microbiology
,
S.
Sariaslani
, and
G. M.
Gadd
, eds.,
Academic Press
, pp.
139
200
.
3.
Bhatnagar
,
A.
,
Kesari
,
K. K.
, and
Shurpali
,
N.
,
2015
, “
Multidisciplinary Approaches to Handling Wastes in Sugar Industries
,”
Water. Air. Soil. Pollut.
,
227
(
1
), p.
11
. 10.1007/s11270-015-2705-y
4.
Nguyen
,
H. N.
,
Steene
,
L. V. D.
,
Le
,
T. T. H.
,
Le
,
D. D.
, and
Ha-Duong
,
M.
,
2018
, “
Rice Husk Gasification: From Industry to Laboratory
,”
IOP Conf. Ser. Earth Environ. Sci.
,
159
, p.
012033
. 10.1088/1755-1315/159/1/012033
5.
Van de steene
,
L.
,
Tagutchou
,
J. P.
,
Escudero Sanz
,
F. J.
, and
Salvador
,
S.
,
2011
, “
Gasification of Woodchip Particles: Experimental and Numerical Study of Char–H2O, Char–CO2, and Char–O2 Reactions
,”
Chem. Eng. Sci.
,
66
(
20
), pp.
4499
4509
. 10.1016/j.ces.2011.05.045
6.
Skoulou
,
V.
,
Kantarelis
,
E.
,
Arvelakis
,
S.
,
Yang
,
W.
, and
Zabaniotou
,
A.
,
2009
, “
Effect of Biomass Leaching on H2 Production, Ash and Tar Behavior During High Temperature Steam Gasification (HTSG) Process
,”
Int. J. Hydrog. Energy
,
34
(
14
), pp.
5666
5673
. 10.1016/j.ijhydene.2009.05.117
7.
Umeki
,
K.
,
Yamamoto
,
K.
,
Namioka
,
T.
, and
Yoshikawa
,
K.
,
2010
, “
High Temperature Steam-Only Gasification of Woody Biomass
,”
Appl. Energy
,
87
(
3
), pp.
791
798
. 10.1016/j.apenergy.2009.09.035
8.
Rasul
,
M. G.
,
Rudolph
,
V.
, and
Carsky
,
M.
,
1999
, “
Physical Properties of Bagasse
,”
Fuel
,
78
(
8
), pp.
905
910
. 10.1016/S0016-2361(99)00011-3
9.
Anukam
,
A.
,
Mamphweli
,
S.
,
Reddy
,
P.
,
Meyer
,
E.
, and
Okoh
,
O.
,
2016
, “
Pre-Processing of Sugarcane Bagasse for Gasification in a Downdraft Biomass Gasifier System: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
66
, pp.
775
801
. 10.1016/j.rser.2016.08.046
10.
Aydin
,
E. S.
,
Yucel
,
O.
, and
Sadikoglu
,
H.
,
2019
, “
Experimental Study on Hydrogen-Rich Syngas Production Via Gasification of Pine Cone Particles and Wood Pellets in a Fixed Bed Downdraft Gasifier
,”
Int. J. Hydrog. Energy
,
44
(
32
), pp.
17389
17396
. 10.1016/j.ijhydene.2019.02.175
11.
Schweitzer
,
D.
,
Gredinger
,
A.
,
Schmid
,
M.
,
Waizmann
,
G.
,
Beirow
,
M.
,
Spörl
,
R.
, and
Scheffknecht
,
G.
,
2018
, “
Steam Gasification of Wood Pellets, Sewage Sludge and Manure: Gasification Performance and Concentration of Impurities
,”
Biomass Bioenergy
,
111
, pp.
308
319
. 10.1016/j.biombioe.2017.02.002
12.
Alevanau
,
A.
,
Ahmed
,
I.
,
Gupta
,
A. K.
,
Yang
,
W.
, and
Blasiak
,
W.
,
2011
, “
Parameters of High Temperature Steam Gasification of Original and Pulverised Wood Pellets
,”
Fuel Process. Technol.
,
92
(
10
), pp.
2068
2074
. 10.1016/j.fuproc.2011.06.009
13.
Lajili
,
M.
,
Guizani
,
C.
,
Escudero Sanz
,
F. J.
, and
Jeguirim
,
M.
,
2018
, “
Fast Pyrolysis and Steam Gasification of Pellets Prepared From Olive Oil Mill Residues
,”
Energy
,
150
, pp.
61
68
. 10.1016/j.energy.2018.02.135
14.
Di Blasi
,
C.
,
2009
, “
Combustion and Gasification Rates of Lignocellulosic Chars
,”
Prog. Energy Combust. Sci.
,
35
(
2
), pp.
121
140
. 10.1016/j.pecs.2008.08.001
15.
Hu
,
Q.
,
Yang
,
H.
,
Xu
,
H.
,
Wu
,
Z.
,
Lim
,
C. J.
,
Bi
,
X. T.
, and
Chen
,
H.
,
2018
, “
Thermal Behavior and Reaction Kinetics Analysis of Pyrolysis and Subsequent In-Situ Gasification of Torrefied Biomass Pellets
,”
Energy Convers. Manag.
,
161
, pp.
205
214
. 10.1016/j.enconman.2018.02.003
16.
Rollinson Andrew
,
N.
, and
Orla
,
W.
, “
Experiments on Torrefied Wood Pellet: Study by Gasification and Characterization for Waste Biomass to Energy Applications
,”
R. Soc. Open Sci.
,
3
(
5
), p.
150578
. 10.1098/rsos.150578
17.
Liu
,
Z.
, and
Balasubramanian
,
R.
,
2013
, “
A Comparison of Thermal Behaviors of Raw Biomass, Pyrolytic Biochar and Their Blends With Lignite
,”
Bioresour. Technol.
,
146
, pp.
371
378
. 10.1016/j.biortech.2013.07.072
18.
Vhathvarothai
,
N.
,
Ness
,
J.
, and
Yu
,
Q. J.
,
2014
, “
An Investigation of Thermal Behaviour of Biomass and Coal During Copyrolysis Using Thermogravimetric Analysis
,”
Int. J. Energy Res.
,
38
(
9
), pp.
1145
1154
. 10.1002/er.3120
19.
Edreis
,
E. M. A.
, and
Yao
,
H.
,
2016
, “
Kinetic Thermal Behaviour and Evaluation of Physical Structure of Sugar Cane Bagasse Char During Non-Isothermal Steam Gasification
,”
J. Mater. Res. Technol.
,
5
(
4
), pp.
317
326
. 10.1016/j.jmrt.2016.03.006
20.
Erlich
,
C.
,
Öhman
,
M.
,
Björnbom
,
E.
, and
Fransson
,
T. H.
,
2005
, “
Thermochemical Characteristics of Sugar Cane Bagasse Pellets
,”
Fuel
,
84
(
5
), pp.
569
575
. 10.1016/j.fuel.2004.10.005
21.
Mermoud
,
F.
,
Salvador
,
S.
,
Van de Steene
,
L.
, and
Golfier
,
F.
,
2006
, “
Influence of the Pyrolysis Heating Rate on the Steam Gasification Rate of Large Wood Char Particles
,”
Fuel
,
85
(
10
), pp.
1473
1482
. 10.1016/j.fuel.2005.12.004
22.
Holm
,
J. K.
,
Henriksen
,
U. B.
,
Wand
,
K.
,
Hustad
,
J. E.
, and
Posselt
,
D.
,
2007
, “
Experimental Verification of Novel Pellet Model Using a Single Pelleter Unit
,”
Energy Fuels
,
21
(
4
), pp.
2446
2449
. 10.1021/ef070156l
23.
Mišljenović
,
N.
,
Čolović
,
R.
,
Vukmirović
,
Đ
,
Brlek
,
T.
, and
Bringas
,
C. S.
,
2016
, “
The Effects of Sugar Beet Molasses on Wheat Straw Pelleting and Pellet Quality. A Comparative Study of Pelleting by Using a Single Pellet Press and a Pilot-Scale Pellet Press
,”
Fuel Process. Technol.
,
144
, pp.
220
229
. 10.1016/j.fuproc.2016.01.001
24.
Puig-Arnavat
,
M.
,
Shang
,
L.
,
Sárossy
,
Z.
,
Ahrenfeldt
,
J.
, and
Henriksen
,
U. B.
,
2016
, “
From a Single Pellet Press to a Bench Scale Pellet Mill—Pelletizing Six Different Biomass Feedstocks
,”
Fuel Process. Technol.
,
142
, pp.
27
33
. 10.1016/j.fuproc.2015.09.022
25.
Tumuluru
,
J. S.
,
2018
, “
Effect of Pellet Die Diameter on Density and Durability of Pellets Made From High Moisture Woody and Herbaceous Biomass
,”
Carbon Resour. Convers
,
1
(
1
), pp.
44
54
. 10.1016/j.crcon.2018.06.002
26.
Tumuluru
,
J. S.
,
Hess
,
J. R.
,
Boardman
,
R. D.
,
Wright
,
C. T.
, and
Westover
,
T. L.
,
2012
, “
Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages With Coal
,”
Ind. Biotechnol.
,
8
(
3
), pp.
113
132
. 10.1089/ind.2012.0004
27.
Demirbas
,
A.
,
2004
, “
Combustion Characteristics of Different Biomass Fuels
,”
Prog. Energy Combust. Sci
,
30
(
2
), pp.
219
230
. 10.1016/j.pecs.2003.10.004
28.
Jenkins
,
B. M.
,
Baxter
,
L. L.
,
Miles
,
T. R.
, and
Miles
,
T. R.
,
1998
, “
Combustion Properties of Biomass
,”
Fuel Process. Technol.
,
54
(
1
), pp.
17
46
. 10.1016/S0378-3820(97)00059-3
29.
Larsson
,
S. H.
, and
Samuelsson
,
R.
,
2017
, “
Prediction of ISO 17831-1:2015 Mechanical Biofuel Pellet Durability From Single Pellet Characterization
,”
Fuel Process. Technol.
,
163
, pp.
8
15
. 10.1016/j.fuproc.2017.04.004
30.
Whittaker
,
C.
, and
Shield
,
I.
,
2017
, “
Factors Affecting Wood, Energy Grass and Straw Pellet Durability—A Review
,”
Renewable Sustainable Energy Rev
,
71
, pp.
1
11
. 10.1016/j.rser.2016.12.119
31.
Telmo
,
C.
, and
Lousada
,
J.
,
2011
, “
Heating Values of Wood Pellets From Different Species
,”
Biomass Bioenergy
,
35
(
7
), pp.
2634
2639
. 10.1016/j.biombioe.2011.02.043
32.
Tan
,
P.
,
Zhang
,
C.
,
Xia
,
J.
,
Fang
,
Q.-Y.
, and
Chen
,
G.
,
2015
, “
Estimation of Higher Heating Value of Coal Based on Proximate Analysis Using Support Vector Regression
,”
Fuel Process. Technol.
,
138
, pp.
298
304
. 10.1016/j.fuproc.2015.06.013
33.
Datar
,
R. P.
,
Shenkman
,
R. M.
,
Cateni
,
B. G.
,
Huhnke
,
R. L.
, and
Lewis
,
R. S.
,
2004
, “
Fermentation of Biomass-Generated Producer Gas to Ethanol
,”
Biotechnol. Bioeng.
,
86
(
5
), pp.
587
594
. 10.1002/bit.20071
34.
Hu
,
X.
,
Guo
,
H.
,
Gholizadeh
,
M.
,
Sattari
,
B.
, and
Liu
,
Q.
,
2019
, “
Pyrolysis of Different Wood Species: Impacts of C/H Ratio in Feedstock on Distribution of Pyrolysis Products
,”
Biomass Bioenergy
,
120
, pp.
28
39
. 10.1016/j.biombioe.2018.10.021
35.
Xu
,
K.
,
Hu
,
S.
,
Su
,
S.
,
Xu
,
C.
,
Sun
,
L.
,
Shuai
,
C.
,
Jiang
,
L.
, and
Xiang
,
J.
,
2013
, “
Study on Char Surface Active Sites and Their Relationship to Gasification Reactivity
,”
Energy Fuels
,
27
(
1
), pp.
118
125
. 10.1021/ef301455x
36.
Zhang
,
R.
,
Chen
,
Y.
,
Lei
,
K.
, and
Liu
,
D.
,
2017
, “
The Effects of Specific Surface Area and Ash on Char Gasification Mechanisms in the Mixture of H2O, CO2, H2 and CO
,”
Fuel
,
209
, pp.
109
116
. 10.1016/j.fuel.2017.07.085
37.
Zoulalian
,
A.
,
Bounaceur
,
R.
, and
Dufour
,
A.
,
2015
, “
Kinetic Modelling of Char Gasification by Accounting for the Evolution of the Reactive Surface Area
,”
Chem. Eng. Sci.
,
138
, pp.
281
290
. 10.1016/j.ces.2015.07.035
38.
Teixeira
,
G.
,
Van de steene
,
L.
,
Ponthieux
,
A.
, and
Salvador
,
S.
,
2014
, “
Prediction of the Gasification Kinetics of a Single Wood Char Particle From a Limited Set of Parameters
,”
Fuel
,
123
, pp.
194
204
. 10.1016/j.fuel.2014.01.028
39.
Nguyen
,
H. N.
,
Steene
,
L. V. D.
, and
Le
,
D. D.
,
2018
, “
Kinetics of Rice Husk Char Gasification in an H2O or a CO2 Atmosphere
,”
Energy Sources Part Recovery Util. Environ. Eff.
,
40
(
14
), pp.
1701
1713
. 10.1080/15567036.2018.1486900
40.
Tagutchou
,
J. P.
,
Van de steene
,
L.
,
Escudero Sanz
,
F. J.
, and
Salvador
,
S.
,
2013
, “
Gasification of Wood Char in Single and Mixed Atmospheres of H2O and CO2
,”
Energy Sources Part Recovery Util. Environ. Eff.
,
35
(
13
), pp.
1266
1276
. 10.1080/15567036.2010.542438
41.
Mermoud
,
F.
,
Golfier
,
F.
,
Salvador
,
S.
,
Van de Steene
,
L.
, and
Dirion
,
J. L.
,
2006
, “
Experimental and Numerical Study of Steam Gasification of a Single Charcoal Particle
,”
Combust. Flame
,
145
(
1–2
), pp.
59
79
. 10.1016/j.combustflame.2005.12.004
42.
Liu
,
Y.
, and
He
,
R.
,
2016
, “
Modeling of the Pore Structure Evolution in Porous Char Particles During Combustion
,”
Combust. Sci. Technol.
,
188
(
2
), pp.
207
232
. 10.1080/00102202.2015.1102904
43.
Espinal
,
J. F.
,
Mondragón
,
F.
, and
Truong
,
T. N.
,
2009
, “
Thermodynamic Evaluation of Steam Gasification Mechanisms of Carbonaceous Materials
,”
Carbon
,
47
(
13
), pp.
3010
3018
. 10.1016/j.carbon.2009.06.048
You do not currently have access to this content.