Abstract

This paper presents a computational study of mixed convection cooling of four in-line electronic chips by alumina-deionized (DI) water nanofluid. The chips are flush-mounted in the substrate of one wall of a vertical rectangular channel. The working fluid enters from the bottom with uniform velocity and temperature and exits from the top after becoming fully developed. The nanofluid properties are obtained from the past experimental studies. The nanofluid performance is estimated by computing the enhancement factor which is the ratio of chips averaged heat transfer coefficient in nanofluid to that in base fluid. An exhaustive parametric study is performed to evaluate the dependence of nanoparticle volume fraction, diameter of Al2O3 nanoparticles in the range of 13–87.5 nm, Reynolds number, inlet velocity, chip heat flux, and mass flowrate on enhancement in heat transfer coefficient. It is found that nanofluids with smaller particle diameters have higher enhancement factors. It is also observed that enhancement factors are higher when the nanofluid Reynolds number is kept equal to that of the base fluid as compared with the cases of equal inlet velocities and equal mass flowrates. The linear variation in mean pressure along the channel is observed and is higher for smaller nanoparticle diameters.

References

1.
U.S. Air Force Avionics Integrity Program notes
,
1989
.
2.
Bar-Cohen
,
A.
,
Kraus
,
A. D.
, and
Davidson
,
S. F.
,
1983
, “
Thermal Frontiers in the Design and Packaging of Microelectronic Equipment
,”
J. Mech. Eng.
,
105
(
6
), pp.
53
59
.
3.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Proceedings of the ASME International ME Congress & Expedition
,
San Francisco, CA
,
Nov. 12–17
.
4.
Sparrow
,
E. M.
,
Niethammer
,
J. E.
, and
Chaboki
,
A.
,
1982
, “
Heat Transfer and Pressure Drop Characteristics of Arrays of Rectangular Modules Encountered in Electronic Equipment
,”
Int. J. Heat Mass Transfer
,
25
(
7
), pp.
961
973
. 10.1016/0017-9310(82)90071-0
5.
Braaten
,
M. E.
, and
Patankar
,
S. V.
,
1985
, “
Analysis of Laminar Mixed Convection in Shrouded Arrays of Heated Rectangular Blocks
,”
Int. J. Heat Mass Transfer
,
28
(
9
), pp.
1699
1709
. 10.1016/0017-9310(85)90144-9
6.
Mahaney
,
H. V.
,
Incropera
,
F. P.
, and
Ramadhyani
,
S.
,
1990
, “
Comparison of Predicted and Measured Mixed Convection Heat Transfer From an Array of Discrete Heat Sources in a Horizontal Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
33
(
6
), pp.
1233
1245
. 10.1016/0017-9310(90)90254-R
7.
Incropera
,
F. P.
,
Kerby
,
J. S.
,
Moffatt
,
D. F.
, and
Ramadhyani
,
S.
,
1986
, “
Convection Heat Transfer From Discrete Heat Sources in a Rectangular
,”
Int. J. Heat Mass Transfer
,
29
(
7
), pp.
1051
1058
. 10.1016/0017-9310(86)90204-8
8.
McEntire
,
A. B.
, and
Webb
,
B. W.
,
1990
, “
Local Forced Convective Heat Transfer From Protruding and Flush-Mounted Two-Dimensional Discrete Heat Sources
,”
Int. J. Heat Mass Transfer
,
33
(
7
), pp.
1521
1533
. 10.1016/0017-9310(90)90048-Y
9.
Choi
,
C. Y.
, and
Ortega
,
A.
,
1993
, “
Mixed Convection in an Inclined Channel With a Discrete Heat Source
,”
Int. J. Heat Mass Transfer
,
36
(
12
), pp.
3119
3134
. 10.1016/0017-9310(93)90040-D
10.
Tso
,
C. P.
,
Xu
,
G. P.
, and
Tou
,
K. W.
,
1999
, “
An Experimental Study on Forced Convection Heat Transfer From Flush-Mounted Discrete Heat Sources
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
326
332
. 10.1115/1.2825984
11.
Bhowmik
,
H.
, and
Tou
,
K. W.
,
2004
, “
An Experimental Study of Transient Heat Transfer From Discrete Heat Sources in Water Cooled Vertical Rectangular Channel
,”
ASME J. Electron. Packag.
,
127
(
3
), pp.
193
199
. 10.1115/1.1997155
12.
Tso
,
C. P.
,
Tou
,
K. W.
, and
Bhowmik
,
H.
,
2005
, “
Experimental and Numerical Thermal Transient Behavior of Chips in a Liquid Channel During Loss of Pumping Power
,”
J. Electron. Packag.
,
126
(
4
), pp.
546
553
. 10.1115/1.1827270
13.
Baskaya
,
S.
,
Erturhan
,
U.
, and
Sivrioglu
,
M.
,
2005
, “
An Experimental Study on Convection Heat Transfer From an Array of Discrete Heat Sources
,”
Int. Commun. Heat Mass Transfer
,
32
(
1–2
), pp.
248
257
. 10.1016/j.icheatmasstransfer.2004.03.018
14.
Guimarães
,
P. M.
, and
Menon
,
G. J.
,
2008
, “
Combined Free and Forced Convection in an Inclined Channel With Discrete Heat Source
,”
Int. Commun. Heat Mass Transfer
,
35
(
10
), pp.
1267
1274
. 10.1016/j.icheatmasstransfer.2008.08.006
15.
Lee
,
S.
,
Choi
,
S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
. 10.1115/1.2825978
16.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
. 10.1016/S0017-9310(01)00175-2
17.
Xie
,
H.
,
Fujii
,
M.
, and
Zhang
,
X.
,
2005
, “
Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2926
2932
. 10.1016/j.ijheatmasstransfer.2004.10.040
18.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
. 10.1115/1.2150834
19.
Behrang
,
A.
,
Taheri
,
S.
, and
Kantzas
,
A.
,
2017
, “
An Analytical Model for the Determination of Effective Heat Conduction of Nanofluids
,”
Int. J. Heat Mass Transfer
,
107
, pp.
461
467
. 10.1016/j.ijheatmasstransfer.2016.11.042
20.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
, 2nd ed., Vol.
1
,
Clarendon Press
,
Oxford, UK
.
21.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2—Water Based Nanofluids
,”
Int. J. Therm. Sci.
,
44
(
4
), pp.
367
373
. 10.1016/j.ijthermalsci.2004.12.005
22.
Townsend
,
J.
, and
Christianson
,
R. J.
,
2009
, “
Nanofluid Properties and Their Effects on Convective Heat Transfer in an Electronics Cooling Application
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
3
), pp.
1
9
.
23.
Utomo
,
A. T.
,
Haghighi
,
E. B.
,
Zavareh
,
A. I. T.
,
Ghanbarpourgeravi
,
M.
,
Poth
,
H.
,
Khodabandeh
,
R.
,
Palm
,
B.
, and
Pacek
,
A. W.
,
2014
, “
The Effect of Nanoparticles on Laminar Heat Transfer in a Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
69
, pp.
77
91
. 10.1016/j.ijheatmasstransfer.2013.10.003
24.
Esfe
,
M. H.
,
Arani
,
A. A. A.
,
Niroumand
,
A. H.
,
Yan
,
W. M.
, and
Karimipour
,
A.
,
2015
, “
Mixed Convection Heat Transfer From Surface-Mounted Block Heat Sources in a Horizontal Channel With Nanofluids
,”
Int. J. Heat Mass Transfer
,
89
, pp.
783
791
. 10.1016/j.ijheatmasstransfer.2015.05.100
25.
Bhowmik
,
H.
,
Tso
,
C. P.
, and
Tou
,
K. W.
,
2005
, “
Analyses of Convection Heat Transfer From Discrete Heat Sources in a Vertical Rectangular Channel
,”
ASME J. Electron. Packag.
,
127
(
3
), pp.
215
222
. 10.1115/1.1938207
26.
Mohebbi
,
R.
,
Lakzayi
,
H.
,
Sidik
,
N. A. C.
, and
Japar
,
W. M. A. A.
,
2018
, “
Lattice Boltzmann Method Based Study of the Heat Transfer Augmentation Associated With Cu/Water Nanofluid in a Channel With Surface Mounted Blocks
,”
Int. J. Heat Mass Transfer
,
117
, pp.
425
435
. 10.1016/j.ijheatmasstransfer.2017.10.043
27.
Sekhar
,
Y. R.
, and
Sharma
,
K. V.
,
2015
, “
Study of Viscosity and Specific Heat Capacity Characteristics of Water-Based Al2O3 Nanofluids at Low Particle Concentrations
,”
J. Exp. Nanosci.
,
10
(
2
), pp.
86
102
. 10.1080/17458080.2013.796595
28.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4410
4428
. 10.1016/j.ijheatmasstransfer.2011.04.048
29.
Goharkhah
,
M.
, and
Ashjaee
,
M.
,
2014
, “
Effect of an Alternating Nonuniform Magnetic Field on Ferrofluid Flow and Heat Transfer in a Channel
,”
J. Magn. Magn. Mater.
,
362
, pp.
80
89
. 10.1016/j.jmmm.2014.03.025
30.
Pak
,
B.
, and
Cho
,
Y.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Experimental Heat Transfer
,
11
(
2
), pp.
151
170
. 10.1080/08916159808946559
You do not currently have access to this content.