Abstract

A novel method for the identification of thermal conductivity and specific heat capacity simultaneously by solving inverse heat transfer problems (IHTPs) is proposed. The present method uses a new iterative format of the Levenberg–Marquardt method (LMM) and guarantees global convergence by implementing the subsection identification method. Both simulation and real experiments are conducted to prove the validity and practicability of the proposed method. The thermal properties in simulation and real experiments are identified, respectively, by the proposed method. In the simulation experiments, random errors are added into temperature data to survey the effect of measurement errors on the identification; and the deviations of the results are also compared to that in a published literature to show the superiority of the proposed method. The numerical results illustrate that the identification is accurate and stable. And the identification results of the real experiment are compared with measured ones, proving the practicability of the method.

References

1.
Lobo
,
H.
,
Cohen
,
C.
, and
Uniuersity
,
C.
,
1990
, “
Measurement of Thermal Conductivity of Polymer Melts by the Line-Source Method
,”
Polym. Eng. Sci.
,
30
(
2
), pp.
65
70
. 10.1002/pen.760300202
2.
Visser
,
E. P.
,
Versteegen
,
E. H.
, and
Van Enckevort
,
W. J. P.
,
1992
, “
Measurement of Thermal Diffusion in Thin Films Using a Modulated Laser Technique: Application to Chemical-Vapor-Deposited Diamond Films
,”
J. Appl. Phys.
,
71
(
7
), pp.
3238
3248
. 10.1063/1.350970
3.
Chu
,
F. I.
,
Taylor
,
R. E.
, and
Donaldson
,
A. B.
,
1980
, “
Thermal Diffusivity Measurements at High Temperatures by the Radial Flash Method
,”
J. Appl. Phys.
,
51
(
1
), pp.
336
341
. 10.1063/1.327377
4.
Sheindlin
,
M.
,
Halton
,
D.
,
Musella
,
M.
, and
Ronchi
,
C.
,
1998
, “
Advances in the Use of Laser-Flash Techniques for Thermal Diffusivity Measurement
,”
Rev. Sci. Instrum.
,
69
(
3
), pp.
1426
1436
. 10.1063/1.1148776
5.
Pavlov
,
T. R.
,
Staicu
,
D.
,
Vlahovic
,
L.
,
Konings
,
R. J. M.
,
Van Uffelen
,
P.
, and
Wenman
,
M. R.
,
2018
, “
A New Method for the Characterization of Temperature Dependent Thermo-Physical Properties
,”
Int. J. Therm. Sci.
,
124
, pp.
98
109
. 10.1016/j.ijthermalsci.2017.10.008
6.
Pavlov
,
T.
,
Vlahovic
,
L.
,
Staicu
,
D.
,
Konings
,
R. J. M.
,
Wenman
,
M. R.
,
Van Uffelen
,
P.
, and
Grimes
,
R. W.
,
2017
, “
A New Numerical Method and Modified Apparatus for the Simultaneous Evaluation of Thermo-Physical Properties Above 1500 K: A Case Study on Isostatically Pressed Graphite
,”
Thermochim. Acta
,
652
, pp.
39
52
. 10.1016/j.tca.2017.03.004
7.
Salmon
,
D.
,
2001
, “
Thermal Conductivity of Insulations Using Guarded Hot Plates, Including Recent Developments and Sources of Reference Materials
,”
Meas. Sci. Technol.
,
12
(
12
), pp.
R89
R98
. 10.1088/0957-0233/12/12/201
8.
Boller
,
A.
,
Jin
,
Y.
, and
Wunderlich
,
B.
,
1994
, “
Heat Capacity Measurement by Modulated DSC at Constant-Temperature
,”
J. Therm. Anal.
,
42
(
2–3
), pp.
307
330
. 10.1007/BF02548519
9.
Ozisik
,
M. N.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor & Francis
,
New York
.
10.
Tikhonov
,
A. N.
, and
Glasko
,
V. B.
,
1965
, “
Use of the Regularization Method in Non-Linear Problems
,”
USSR Comput. Mathemat. Math. Phys.
,
5
(
3
), pp.
93
107
. 10.1016/0041-5553(65)90150-3
11.
Pourgholi
,
R.
, and
Rostamian
,
M.
,
2010
, “
A Numerical Technique for Solving IHCPs Using Tikhonov Regularization Method
,”
Appl. Math. Modell.
,
34
(
8
), pp.
2102
2110
. 10.1016/j.apm.2009.10.022
12.
Yang
,
F.
, and
Fu
,
C.
,
2010
, “
A Simplified Tikhonov Regularization Method for Determining the Heat Source
,”
Appl. Math. Modell.
,
34
(
11
), pp.
3286
3299
. 10.1016/j.apm.2010.02.020
13.
Yang
,
F.
, and
Fu
,
C.
,
2010
, “
The Method of Simplified Tikhonov Regularization for Dealing with the Inverse Time-Dependent Heat Source Problem
,”
Comput. Math. Appl.
,
60
(
5
), pp.
1228
1236
. 10.1016/j.camwa.2010.06.004
14.
Beck
,
J. V.
,
1970
, “
Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer.
,
13
(
4
), pp.
703
716
. 10.1016/0017-9310(70)90044-X
15.
Ling
,
X.
,
Cherukuri
,
H. P.
, and
Keanini
,
R. G.
,
2005
, “
A Modified Sequential Function Specification Finite Element-Based Method for Parabolic Inverse Heat Conduction Problems
,”
Comput. Mech.
,
36
(
2
), pp.
117
128
. 10.1007/s00466-004-0644-3
16.
Sawaf
,
B.
,
Ozisik
,
M.
, and
Jarny
,
Y.
,
1995
, “
An Inverse Analysis to Estimate Linearly Temperature Dependent Thermal Conductivity Components and Heat Capacity of an Orthotropic Medium
,”
Int. J. Heat Mass Transfer.
,
38
(
16
), pp.
3005
3010
. 10.1016/0017-9310(95)00044-A
17.
Telejko
,
T.
, and
Malinowski
,
Z.
,
2004
, “
Application of an Inverse Solution to the Thermal Conductivity Identification Using the Finite Element Method
,”
J. Mater. Process. Technol.
,
146
(
2
), pp.
145
155
. 10.1016/j.jmatprotec.2003.10.006
18.
Hào
,
D. N.
,
Thanh
,
P. X.
, and
Lesnic
,
D.
,
2013
, “
Determination of the Heat Transfer Coefficients in Transient Heat Conduction
,”
Inv. Prob.
,
29
(
9
), p.
095020
. 10.1088/0266-5611/29/9/095020
19.
Pan
,
W.
,
Yi
,
F.
,
Zhu
,
Y.
, and
Meng
,
S.
,
2016
, “
Identification of Temperature-Dependent Thermal Conductivity and Experimental Verification
,”
Meas. Sci. Technol.
,
27
(
7
), pp.
75005
75011
. 10.1088/0957-0233/27/7/075005
20.
Huang
,
C.
, and
Huang
,
C.
,
2007
, “
An Inverse Problem in Estimating Simultaneously the Effective Thermal Conductivity and Volumetric Heat Capacity of Biological Tissue
,”
Appl. Math. Modell.
,
31
(
9
), pp.
1785
1797
. 10.1016/j.apm.2006.06.002
You do not currently have access to this content.