Abstract

Grinding is a promising machining method for finishing workpieces that need a smooth surface with tight tolerances. Due to the high thermal energy generated in the grinding zone, an accurate prediction of workpiece temperature plays a crucial role in the design and optimization of the grinding process. Finite difference method (FDM) is used for simulating the temperature distribution in a workpiece subjected to shallow grinding using a DuFort–Frankel explicit scheme. Moreover, two simple methods, one for modeling the effect of material removal in shallow grinding and the other for calculating the heat partition, are presented. A semi-empirical correlation of cooling jet is applied to calculate the convection heat transfer coefficient (CHTC) over the grinding surface. Experiments were carried out to verify the simulation results, and a good agreement was observed between the simulation and experimental data. An analysis of the results indicated that the misestimation of workpiece temperature could occur when the effect of the material removal rate is not considered in the simulation. The simulation results showed that the heat flux flow is one-dimensional for a high Peclet number, while a two-dimensional heat flux flow prevails for a low Peclet number. The results revealed that reducing the Peclet number and extending the depth of cut increase the heat partition. The study of wet grinding demonstrated that, for efficient cooling, the coolant should be applied directly to the contact zone. Moreover, using water-based emulsion as a coolant was more effective than palm and sunflower oils.

References

References
1.
Malkin
,
S.
, and
Guo
,
C.
,
2008
,
Grinding Technology : Theory and Applications of Machining With Abrasives
,
Industrial Press
,
New York
.
2.
Marinescu
,
I. D.
,
Rowe
,
W. B.
,
Dimitrove
,
B.
, and
Inasaki
,
I.
,
2004
,
Tribology of Abrasive Machining Processes
,
William Andrew Pub
,
Norwich, NY
.
3.
Jawahir
,
I. S.
,
Brinksmeier
,
E.
,
M’Saoubi
,
R.
,
Aspinwall
,
D. K.
,
Outeiro
,
J. C.
,
Meyer
,
D.
,
Umbrello
,
D.
, and
Jayal
,
A. D.
,
2011
, “
Surface Integrity in Material Removal Processes: Recent Advances
,”
CIRP Ann.
,
60
(
2
), pp.
603
626
. 10.1016/j.cirp.2011.05.002
4.
Jin
,
T.
, and
Stephenson
,
D. J.
,
2006
, “
Heat Flux Distributions and Convective Heat Transfer in Deep Grinding
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1862
1868
. 10.1016/j.ijmachtools.2005.11.004
5.
Guerrini
,
G.
,
Lutey
,
A. H. A.
,
Melkote
,
S. N.
,
Ascari
,
A.
, and
Fortunato
,
A.
,
2019
, “
Dry Generating Gear Grinding: Hierarchical Two-Step Finite Element Model for Process Optimization
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061005
. 10.1115/1.4043309
6.
Jaeger
,
J. C.
,
1942
, “
Moving Sources of Heat and the Temperature of Sliding Contacts
,”
Proc. R. Soc. New South Wales
,
76
, pp.
203
224
.
7.
Malkin
,
S.
, and
Anderson
,
R. B.
,
1974
, “
Thermal Aspects of Grinding: Part 1—Energy Partition
,”
J. Eng. Ind.
,
96
(
4
), pp.
1177
1183
. 10.1115/1.3438492
8.
Malkin
,
S.
,
1974
, “
Thermal Aspects of Grinding: Part 2—Surface Temperatures and Workpiece Burn
,”
J. Eng. Ind.
,
96
(
4
), pp.
1184
1191
. 10.1115/1.3438493
9.
Jen
,
T.-C.
, and
Lavine
,
A. S.
,
1995
, “
A Variable Heat Flux Model of Heat Transfer in Grinding: Model Development
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
473
478
. 10.1115/1.2822546
10.
Dawson
,
P. R.
, and
Malkin
,
S.
,
1984
, “
Inclined Moving Heat Source Model for Calculating Metal Cutting Temperatures
,”
J. Eng. Ind.
,
106
(
3
), pp.
179
186
. 10.1115/1.3185930
11.
Jin
,
T.
, and
Cai
,
G. Q.
,
2001
, “
Analytical Thermal Models of Oblique Moving Heat Source for Deep Grinding and Cutting
,”
ASME J. Manuf. Sci. Eng.
,
123
(
2
), pp.
185
190
. 10.1115/1.1343458
12.
Rowe
,
W. B.
,
2001
, “
Temperature Case Studies in Grinding Including an Inclined Heat Source Model
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
215
(
4
), pp.
473
491
. 10.1243/0954405011518449
13.
González-Santander
,
J. L.
,
2016
, “
Maximum Temperature in Dry Surface Grinding for High Peclet Number and Arbitrary Heat Flux Profile
,”
Math. Probl. Eng.
,
2016
, p.
9
. 10.1155/2016/8470493
14.
Guo
,
C.
, and
Chen
,
Y.
,
2018
, “
Thermal Modeling and Optimization of Interrupted Grinding
,”
CIRP Ann.
,
67
(
1
), pp.
321
324
. 10.1016/j.cirp.2018.04.083
15.
Lavine
,
A. S.
,
1988
, “
A Simple Model for Convective Cooling During the Grinding Process
,”
J. Eng. Ind.
,
110
(
1
), p.
1
. 10.1115/1.3187837
16.
Lavine
,
A. S.
, and
Jen
,
T.-C.
,
1991
, “
Thermal Aspects of Grinding: Heat Transfer to Workpiece, Wheel, and Fluid
,”
ASME J. Heat Transfer
,
113
(
2
), pp.
296
303
. 10.1115/1.2910561
17.
Guo
,
C.
, and
Malkin
,
S.
,
1992
, “
Analysis of Fluid Flow Through the Grinding Zone
,”
J. Eng. Ind.
,
114
(
4
), p.
427
. 10.1115/1.2900694
18.
Liao
,
Y. S.
,
Luo
,
S. Y.
, and
Yang
,
T. H.
,
2000
, “
A Thermal Model of the Wet Grinding Process
,”
J. Mater. Process. Technol.
,
101
(
1–3
), pp.
137
145
. 10.1016/S0924-0136(00)00440-4
19.
Madopothula
,
U.
,
Lakshmanan
,
V.
,
Nimmagadda
,
R. B.
, and
Elango
,
P.
,
2017
, “
Prediction of Temperature Distribution in the Workpiece During Multi-Pass Grinding by Finite Volume Method
,”
Int. J. Precis. Eng. Manuf.
,
18
(
11
), pp.
1485
1493
. 10.1007/s12541-017-0176-3
20.
Guo
,
C.
, and
Malkin
,
S.
,
1995
, “
Analysis of Transient Temperatures in Grinding
,”
J. Eng. Ind.
,
117
(
4
), pp.
571
577
. 10.1115/1.2803535
21.
Jin
,
T.
,
Stephenson
,
D. J.
, and
Rowe
,
W. B.
,
2003
, “
Estimation of the Convection Heat Transfer Coefficient of Coolant Within the Grinding Zone
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
217
(
3
), pp.
397
407
. 10.1243/095440503321590550
22.
Jin
,
T.
, and
Stephenson
,
D. J.
,
2008
, “
A Study of the Convection Heat Transfer Coefficients of Grinding Fluids
,”
CIRP Ann.
,
57
(
1
), pp.
367
370
. 10.1016/j.cirp.2008.03.074
23.
Ramesh
,
K.
,
Huang
,
H.
, and
Yin
,
L.
,
2004
, “
Analytical and Experimental Investigation of Coolant Velocity in High Speed Grinding
,”
Int. J. Mach. Tools Manuf.
,
44
(
10
), pp.
1069
1076
. 10.1016/j.ijmachtools.2004.02.017
24.
Lin
,
B.
,
Morgan
,
M. N.
,
Chen
,
X. W.
, and
Wang
,
Y. K.
,
2009
, “
Study on the Convection Heat Transfer Coefficient of Coolant and the Maximum Temperature in the Grinding Process
,”
Int. J. Adv. Manuf. Technol.
,
42
(
11–12
), pp.
1175
1186
. 10.1007/s00170-008-1668-1
25.
Vashista
,
M.
, and
Paul
,
S.
,
2016
, “
Effect of Process Parameters on Convective Heat Transfer Coefficient of Fluid and Heat Partitioning in High Efficiency Deep Grinding With Water-Based Coolant
,”
Int. J. Mach. Mach. Mater.
,
18
(
5/6
), pp.
572
585
. 10.1504/IJMMM.2016.078994
26.
Sun
,
F. H.
, and
Xu
,
H. J.
,
2002
, “
A New Technology on Enhancing Heat Transfer at Grinding Zone Through Jet Impingement During Creep Feed Grinding
,”
Mach. Sci. Technol.
,
6
(
1
), pp.
43
52
. 10.1081/MST-120003184
27.
Majumdar
,
S.
,
Kumar
,
S.
,
Roy
,
D.
,
Chakraborty
,
S.
, and
Das
,
S.
,
2018
, “
Improvement of Lubrication and Cooling in Grinding
,”
Mater. Manuf. Process.
,
33
(
13
), pp.
1459
1465
. 10.1080/10426914.2017.1364756
28.
Jiang
,
F.
,
Wang
,
H.
,
Wang
,
Y.
, and
Xiang
,
J.
,
2016
, “
Simulation of Flow and Heat Transfer of Mist/Air Impinging Jet on Grinding Work-Piece
,”
J. Appl. Fluid Mech.
,
9
(
3
), pp.
1339
1348
. 10.18869/acadpub.jafm.68.228.24612
29.
O’Donovan
,
T. S.
,
Murray
,
D. B.
, and
Torrance
,
A. A.
,
2006
, “
Jet Heat Transfer in the Vicinity of a Rotating Grinding Wheel
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
220
(
6
), pp.
837
845
. 10.1243/09544062JMES215
30.
Zhang
,
J.-Z.
,
Tan
,
X.-M.
,
Liu
,
B.
, and
Zhu
,
X.-D.
,
2013
, “
Investigation for Convective Heat Transfer on Grinding Work-Piece Surface Subjected to an Impinging Jet
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
653
661
. 10.1016/j.applthermaleng.2012.10.011
31.
Yang
,
M.
,
Li
,
C.
,
Zhang
,
Y.
,
Wang
,
Y.
,
Li
,
B.
,
Jia
,
D.
,
Hou
,
Y.
, and
Li
,
R.
,
2017
, “
Research on Microscale Skull Grinding Temperature Field Under Different Cooling Conditions
,”
Appl. Therm. Eng.
,
126
, pp.
525
537
. 10.1016/j.applthermaleng.2017.07.183
32.
Wang
,
R.
,
Dai
,
S.
,
Zhang
,
H.
, and
Dong
,
Y.
,
2017
, “
The Temperature Field Study on the Annular Heat Source Model in Large Surface Grinding by Cup Wheel
,”
Int. J. Adv. Manuf. Technol.
,
93
(
9–12
), pp.
3261
3273
. 10.1007/s00170-017-0732-0
33.
Stephenson
,
D. J.
,
Jin
,
T.
, and
Corbett
,
J.
,
2002
, “
High Efficiency Deep Grinding of a Low Alloy Steel With Plated CBN Wheels
,”
CIRP Ann.
,
51
(
1
), pp.
241
244
. 10.1016/S0007-8506(07)61508-X
34.
Zhang
,
Z. Y.
,
Shang
,
W.
,
Ding
,
H. H.
,
Guo
,
J.
,
Wang
,
H. Y.
,
Liu
,
Q. Y.
, and
Wang
,
W. J.
,
2016
, “
Thermal Model and Temperature Field in Rail Grinding Process Based on a Moving Heat Source
,”
Appl. Therm. Eng.
,
106
, pp.
855
864
. 10.1016/j.applthermaleng.2016.06.071
35.
Miao
,
Q.
,
Li
,
H. N.
, and
Ding
,
W. F.
,
2020
, “
On the Temperature Field in the Creep Feed Grinding of Turbine Blade Root: Simulation and Experiments
,”
Int. J. Heat Mass Transf.
,
147
, p.
118957
. 10.1016/j.ijheatmasstransfer.2019.118957
36.
Li
,
H. N.
, and
Axinte
,
D.
,
2017
, “
On a Stochastically Grain-Discretised Model for 2D/3D Temperature Mapping Prediction in Grinding
,”
Int. J. Mach. Tools Manuf.
,
116
, pp.
60
76
. 10.1016/j.ijmachtools.2017.01.004
37.
Wang
,
Z.
,
Yu
,
T.
,
Wang
,
X.
,
Zhang
,
T.
,
Zhao
,
J.
, and
Wen
,
P. H.
,
2019
, “
Grinding Temperature Field Prediction by Meshless Finite Block Method With Double Infinite Element
,”
Int. J. Mech. Sci.
,
153–154
, pp.
131
142
. 10.1016/j.ijmecsci.2019.01.037
38.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
John Wiley & Sons, Inc
,
New York
.
39.
Lan
,
S.
, and
Jiao
,
F.
,
2019
, “
Modeling of Heat Source in Grinding Zone and Numerical Simulation for Grinding Temperature Field
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5–8
), pp.
3077
3086
. 10.1007/s00170-019-03662-w
40.
Li
,
X.
,
1996
, “
Study of the Jet-Flow Rate of Cooling in Machining Part 1. Theoretical Analysis
,”
J. Mater. Process. Technol.
,
62
(
1–3
), pp.
149
156
. 10.1016/0924-0136(95)02197-3
41.
Webb
,
B. W.
, and
Ma
,
C.-F.
,
1995
, “
Single-Phase Liquid Jet Impingement Heat Transfer
,”
Adv. Heat Transf.
,
26
, pp.
105
217
. 10.1016/S0065-2717(08)70296-X
42.
Hoffmann
,
K. A.
, and
Chiang
,
S. T.
,
2000
,
Computational Fluid Dynamics
, Vol.
I
,
Engineering Education System
,
Wichita, KS
, pp.
64
65
.
43.
Kohli
,
S.
,
Guo
,
C.
, and
Malkin
,
S.
,
1995
, “
Energy Partition to the Workpiece for Grinding With Aluminum Oxide and CBN Abrasive Wheels
,”
J. Eng. Ind.
,
117
(
2
), pp.
160
168
. 10.1115/1.2803290
44.
Anderson
,
D.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2008
, “
Comparison of Numerically and Analytically Predicted Contact Temperatures in Shallow and Deep Dry Grinding With Infrared Measurements
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
320
328
. 10.1016/j.ijmachtools.2007.10.010
45.
Anderson
,
D.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2007
, “
Experimental Validation of Numerical Thermal Models for Dry Grinding
,”
J. Mater. Process. Technol.
,
4
(
1–3
), pp.
269
278
. 10.1016/j.jmatprotec.2007.11.080
46.
Jiang
,
J.
,
Ge
,
P.
,
Sun
,
S.
,
Wang
,
D.
,
Wang
,
Y.
, and
Yang
,
Y.
,
2016
, “
From the Microscopic Interaction Mechanism to the Grinding Temperature Field: An Integrated Modelling on the Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
110
, pp.
27
42
. 10.1016/j.ijmachtools.2016.08.004
47.
Zhao
,
M.
,
Ji
,
X.
, and
Liang
,
S. Y.
,
2019
, “
Micro-Grinding Temperature Prediction Considering the Effects of Crystallographic Orientation
,”
Manuf. Rev.
,
6
, p.
22
. 10.1051/mfreview/2019009
48.
Yin
,
G.
, and
Marinescu
,
I. D.
,
2017
, “
A Heat Transfer Model of Grinding Process Based on Energy Partition Analysis and Grinding Fluid Cooling Application
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121015
. 10.1115/1.4037241
You do not currently have access to this content.