Abstract

The Chemkin-Pro Application Programming Interface (API) was used to implement surface-kinetics user-routines to expand current aerosol dynamics models. Phase change mechanisms were expanded to include homogeneous nucleation in supersaturated environments, and particle size-dependent vapor condensation and evaporation. Homogeneous nucleation of water droplets was modeled with classical nucleation theory (CNT) and a modified form of nucleation theory published by Dillmann, A., and Meier, G. E. A. (1991, “A Refined Droplet Approach to the Problem of Homogeneous Nucleation From the Vapor-Phase,” J. Chem. Phys., 94(5), pp. 3872–3884). The Chemkin-Pro homogeneous nucleation module, developed in this work, was validated against published data for nucleation fluxes at varying pressures, temperatures, and vapor concentrations. A newly released feature in Chemkin-Pro enabled particle size-dependent surface reaction rates. A Chemkin-Pro vapor condensation and evaporation module was written and verified with the formulation published in Hinds, W. C. (1999, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, Wiley, New York). Lastly, Chemkin-Pro results for coagulation in the transition regime were verified with the semi-implicit method developed by Jacobson, M. Z. (1999, Fundamentals of Atmospheric Modeling, Cambridge University Press, New York, NY). Good performance was observed for all three Chemkin-Pro modules. This work illustrates the utility of the Chemkin-Pro API, and the flexibility with which models can be developed using surface-kinetics user-routines. This paper illustrates that Chemkin-Pro can be developed to include more physically representative aerosol dynamics processes where rates are defined based on physical and chemical parameters rather than Arrhenius rates. The methods and modules developed in this work can be applied to industrial problems like material synthesis (e.g., powder production), processes involving phase change like heat exchangers, as well as more fundamental scientific processes like cloud physics.

References

1.
Ahktar
,
M. K.
,
Vemury
,
S.
, and
Pratsinis
,
S. E.
,
1994
, “
Competition Between TiCl4 Hydrolysis and Oxidation and its Effect on Product TiO2 Powder
,”
Am. Inst. Chem. Eng. J.
,
40
(
7
), pp.
1183
1192
.
2.
Ahktar
,
M. K.
,
Xiong
,
Y.
, and
Pratsinis
,
S. E.
,
1991
, “
Vapor Synthesis of Titania Powder by Titanium Tetrachloride Oxidation
,”
Am. Inst. Chem. Eng. J.
,
37
(
10
), pp.
1561
1570
.
3.
Cheng
,
M. D.
,
Ford
,
E. A.
,
DePaoli
,
D. W.
,
Kenik
,
E. A.
, and
Angelini
,
P.
,
2007
, “
Validation of TiO2 Particle-Size Distribution Measured by Scanning Mobility Particle Sizer
,”
Ind. Eng. Chem. Res.
,
46
(
19
), pp.
6269
6272
. 10.1021/ie0610546
4.
Pratsinis
,
S. E.
,
Bai
,
H.
,
Frenklach
,
M.
,
Mastrangelo
,
S. V. R.
, and
Biswas
,
P.
,
1990
, “
Kinetics of Titanium(lV) Chloride Oxidation
,”
J. Am. Ceram. Soc.
,
73
(
7
), pp.
2158
2162
. 10.1111/j.1151-2916.1990.tb05295.x
5.
Pratsinis
,
S. E.
, and
Spicer
,
P. T.
,
1998
, “
Competition Between Gas Phase and Surface Oxidation of TiCl4 During Synthesis of TiO2 Particles
,”
Chem. Eng. Sci.
,
53
(
10
), pp.
1861
1868
. 10.1016/S0009-2509(98)00026-8
6.
Rigo
,
M.
,
Canu
,
P.
,
Angelin
,
L.
, and
Della Valle
,
G.
,
1998
, “
Kinetics of TiCl4 Hydrolysis in a Moist Atmosphere
,”
Ind. Eng. Chem. Res.
,
37
(
4
), pp.
1189
1195
. 10.1021/ie970625e
7.
Spicer
,
P. T.
,
Chaoul
,
O.
,
Tsantilis
,
S.
, and
Pratsinis
,
S. E.
,
2002
, “
Titania Formation by TiCl4 Gas Phase Oxidation, Surface Growth and Coagulation
,”
J. Aerosol Sci.
,
33
(
1
), pp.
17
34
. 10.1016/S0021-8502(01)00069-6
8.
Ulrich
,
G. D.
,
1971
, “
Theory of Particle Formation and Growth in Oxide Synthesis Flames
,”
Combust. Sci. Technol.
,
4
(
1
), pp.
47
57
. 10.1080/00102207108952471
9.
Wang
,
T.
,
Navarrete-Lopez
,
A. M.
,
Li
,
S.
,
Dixon
,
D. A.
, and
Gole
,
J. L.
,
2010
, “
Hydrolysis of TiCl4—Initial Steps in the Production of TiO2
,”
J. Phys. Chem. A
,
114
(
28
), pp.
7561
7570
. 10.1021/jp102020h
10.
West
,
R. H.
,
Shirley
,
R. A.
,
Kraft
,
M.
,
Goldsmith
,
C. F.
, and
Green
,
W. H.
,
2009
, “
A Detailed Kinetic Model for Combustion Synthesis of Titania From TiCl4
,”
Combust. Flame
,
156
(
9
), pp.
1764
1770
. 10.1016/j.combustflame.2009.04.011
11.
Xiong
,
Y.
, and
Pratsinis
,
S. E.
,
1991
, “
Gas Phase Production of Particles in Reactive Turbulent Flows
,”
J. Aerosol Sci.
,
22
(
5
), pp.
637
655
. 10.1016/0021-8502(91)90017-C
12.
Zeatoun
,
L. y.
, and
Feke
,
D.
,
2005
, “
Characterization of TiO2 Smoke Prepared Using Gas-Phase Hydrolysis of TiCl4
,”
Part. Part. Syst. Charact.
,
22
(
4
), pp.
276
281
. 10.1002/ppsc.200500947
13.
Woo
,
D.
,
Seo
,
J.
, and
Taesung
,
K.
,
2009
, “
Numerical Simulation of Si Nanoparticle Formation by Silane Pyrolysis
,”
Nano
,
4
(
2
), pp.
107
117
.
14.
Messing
,
G. L.
,
Zhang
,
S. C.
, and
Jayanthi
,
G. V.
,
1993
, “
Ceramic Powder Synthesis by Spray-Pyrolysis
,”
J. Am. Ceram. Soc.
,
76
(
11
), pp.
2707
2726
. 10.1111/j.1151-2916.1993.tb04007.x
15.
Pratsinis
,
S. E.
,
1998
, “
Flame Aerosol Synthesis of Ceramic Powders
,”
Prog. Energy Combust. Sci.
,
24
(
3
), pp.
197
219
. 10.1016/S0360-1285(97)00028-2
16.
Brock
,
J. R.
, and
Oates
,
J.
,
1987
, “
Moment Simulation of Aerosol Evaporation
,”
J. Aerosol Sci.
,
18
(
1
), pp.
59
64
. 10.1016/0021-8502(87)90010-3
17.
Frenklach
,
M.
, and
Harris
,
S. J.
,
1987
, “
Aerosol Dynamics Modeling Using the Method of Moments
,”
J. Colloid Interface Sci.
,
118
(
1
), pp.
252
261
. 10.1016/0021-9797(87)90454-1
18.
McGraw
,
R.
,
1997
, “
Description of Aerosol Dynamics by the Quadrature Method of Moments
,”
Aerosol Sci. Technol.
,
27
(
2
), pp.
255
265
. 10.1080/02786829708965471
19.
McGraw
,
R.
, and
Wright
,
D. L.
,
2003
, “
Chemically Resolved Aerosol Dynamics for Internal Mixtures by the Quadrature Method of Moments
,”
J. Aerosol Sci.
,
34
(
2
), pp.
189
209
. 10.1016/S0021-8502(02)00157-X
20.
Upadhyay
,
R. R.
, and
Ezekoye
,
O. A.
,
2006
, “
Treatment of Size-Dependent Aerosol Transport Processes Using Quadrature Based Moment Methods
,”
J. Aerosol Sci.
,
37
(
7
), pp.
799
819
. 10.1016/j.jaerosci.2005.06.002
21.
Chou
,
C.
,
Hodgson
,
D.
,
Petrova
,
M.
, and
Meeks
,
E.
,
2007
, “
Modeling Soot Growth and Activity With Heterogeneous Kinetics and Method of Moments
,”
Proceedings of the 5th US Combustion Meeting
,
San Diego, CA
,
Mar. 25
, pp.
1
25
.
22.
Gelbard
,
F.
, and
Seinfeld
,
J. H.
,
1979
, “
General Dynamic Equation for Aerosols—Theory and Application to Aerosol Formation and Growth
,”
J. Colloid Interface Sci.
,
68
(
2
), pp.
363
382
. 10.1016/0021-9797(79)90289-3
23.
Gelbard
,
F.
, and
Seinfeld
,
J. H.
,
1980
, “
Simulation of Multicomponent Aerosol Dynamics
,”
J. Colloid Interface Sci.
,
78
(
2
), pp.
485
501
. 10.1016/0021-9797(80)90587-1
24.
Gelbard
,
F.
,
Tambour
,
Y.
, and
Seinfeld
,
J. H.
,
1980
, “
Sectional Representations for Simulating Aerosol Dynamics
,”
J. Colloid Interface Sci.
,
76
(
2
), pp.
541
556
. 10.1016/0021-9797(80)90394-X
25.
Jacobson
,
M. Z.
,
2005
,
Fundamentals of Atmospheric Modeling
,
Cambridge University Press, Cambridge
,
New York
.
26.
Jacobson
,
M. Z.
, and
Turco
,
R. P.
,
1995
, “
Simulating Condensational Growth, Evaporation, and Coagulation of Aerosols Using a Combined Moving and Stationary Size Grid
,”
Aerosol Sci. Technol.
,
22
(
1
), pp.
73
92
. 10.1080/02786829408959729
27.
Jacobson
,
M. Z.
,
Turco
,
R. P.
,
Jensen
,
E. J.
, and
Toon
,
O. B.
,
1994
, “
Modeling Coagulation Among Particles of Different Composition and Size
,”
Atmos. Environ.
,
28
(
7
), pp.
1327
1338
. 10.1016/1352-2310(94)90280-1
28.
Zhang
,
Y.
,
Seigneur
,
C.
,
Seinfeld
,
J. H.
,
Jacobson
,
M. Z.
, and
Binkowski
,
F. S.
,
1999
, “
Simulation of Aerosol Dynamics: A Comparative Review of Algorithms Used in Air Quality Models
,”
Aerosol Sci. Technol.
,
31
(
6
), pp.
487
514
. 10.1080/027868299304039
29.
Bramley
,
R. E.
,
1997
, “
Chemkin Goes Commercial
,”
IEEE Comput. Sci. Eng.
,
4
(
4
), pp.
75
75
.
30.
Coltrin
,
M. E.
,
Kee
,
R. J.
, and
Rupley
,
F. M.
,
1991
, “
Surface Chemkin: A General Formalism and Software for Analyzing Heterogeneous Chemical Kinetics at a Gas-Surface Interface
,”
Int. J. Chem. Kinet.
,
23
(
12
), pp.
1111
1128
. 10.1002/kin.550231205
31.
Coltrin
,
M. E.
,
Meeks
,
E.
,
Grcar
,
J. F.
,
Houf
,
W. G.
,
Kee
,
R. J.
, and
Creighton
,
J. R.
,
1998
, “
Chemical Kinetics Models for Semiconductor Processing
,”
Mater. Res. Soc. Symp. Proc.
,
490
(Symposium Q – Semiconductor Process & Device Performance Modeling), pp.
143
154
. 10.1557/PROC-490-143
32.
Creighton
,
J. R.
,
Coltrin
,
M. E.
, and
Figiel
,
J. J.
,
2008
, “
Observations of Gas-Phase Nanoparticles During InGaN Metal-Organic Chemical Vapor Deposition
,”
Appl. Phys. Lett.
,
93
(
17
), p.
171906
. 10.1063/1.3009291
33.
Wyslouzil
,
B. E.
, and
Wölk
,
J.
,
2016
, “
Overview: Homogeneous Nucleation From the Vapor Phase—The Experimental Science
,”
J. Chem. Phys.
,
145
(
21
), p.
211702
. 10.1063/1.4962283
34.
Dillmann
,
A.
, and
Meier
,
G. E. A.
,
1991
, “
A Refined Droplet Approach to the Problem of Homogeneous Nucleation From the Vapor-Phase
,”
J. Chem. Phys.
,
94
(
5
), pp.
3872
3884
. 10.1063/1.460663
35.
McClurg
,
R. B.
, and
Flagan
,
R. C.
,
1998
, “
Critical Comparison of Droplet Models in Homogeneous Nucleation Theory
,”
J. Colloid Interface Sci.
,
201
(
2
), pp.
194
199
. 10.1006/jcis.1997.5379
36.
Viisanen
,
Y.
,
Strey
,
R.
, and
Reiss
,
H.
,
1993
, “
Homogeneous Nucleation Rates for Water
,”
J. Chem. Phys.
,
99
(
6
), pp.
4680
4692
. 10.1063/1.466066
37.
Miller
,
R. C.
,
Anderson
,
R. J.
,
Kassner
,
J. L.
, and
Hagen
,
D. E.
,
1983
, “
Homogeneous Nucleation Rate Measurements for Water Over a Wide-Range of Temperature and Nucleation Rate
,”
J. Chem. Phys.
,
78
(
6
), pp.
3204
3211
. 10.1063/1.445236
38.
Hinds
,
W. C.
,
1999
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
Wiley
,
New York
.
39.
Seinfeld
,
J. H.
, and
Pandis
,
S. N.
,
2006
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
,
John Wiley
,
Hoboken, NJ
.
40.
Seinfeld
,
J. H.
, and
Pandis
,
S. N.
,
1998
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
,
Wiley
,
New York
.
41.
Jacobson
,
M. Z.
,
1999
,
Fundamentals of Atmospheric Modeling
,
Cambridge University Press
,
New York, NY
.
You do not currently have access to this content.