Abstract

A realistic internal cooling system of a turbine blade includes both ribs and pin-fins inside the passages to enhance the heat transfer. However, the majority studies in the open literature assessing the heat transfer characteristics on a simplified cooling model by examining ribbed-roughen passages and pin-finned passage separately. This work presents the high-resolution heat transfer coefficients of a scaled realistic turbine blade internal cooling design. The cooling system, using a 3D-printed plastic material, consists of an S-shaped inlet, four serpentine passages (three U-bends) of variable aspect ratio, and the trailing edge ejection. Angled ribs are implemented inside the passages and the elongated fins and pins are used near the trailing edge. Two dust holes are realized on the blade tip, the injections are individually controlled to reflect the realistic coolant flowrate variation inside the entire internal cooling system. The tests are conducted at two Reynolds number, 45,000 and 60,000 based on the hydraulic diameter of the inlet passage. Transient heat transfer technique using thermochromic liquid crystal is applied to obtain the detailed heat transfer characteristic inside the cooling channel. The local and averaged Nusselt numbers are also compared with the correlations in the open literature. This paper provides gas turbine designers the difference of local heat transfer distributions between the realistic and simplified internal cooling designs.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
2.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Trans.
,
140
(
11
), p.
113001
. 10.1115/1.4039644
3.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Trans.
,
110
(
2
), pp.
321
328
. 10.1115/1.3250487
4.
Han
,
J. C.
,
Park
,
J. S.
, and
Ibrahim
,
M. Y.
,
1986
, “
Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters
,” NASA Contractor Report 4015; AVSCOM Technical Report 86-C-25, pp.
1
197
.
5.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Trans.
,
31
(
1
), pp.
183
195
. 10.1016/0017-9310(88)90235-9
6.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
,
Ou
,
S.
, and
Boyle
,
R. J.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Trans.
,
35
(
11
), pp.
2891
2903
. 10.1016/0017-9310(92)90309-G
7.
Rallabandi
,
A. P.
,
Yang
,
H.
, and
Han
,
J. C.
,
2009
, “
Heat Transfer and Pressure Drop Correlations for Square Channels With 45 Deg Ribs at High Reynolds Numbers
,”
ASME J. Heat Trans.
,
131
(
7
), p.
071703
. 10.1115/1.3090818
8.
Rallabandi
,
A. P.
,
Alkhamis
,
N.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer and Pressure Drop Measurements for a Square Channel With 45 Deg Round-Edged Ribs at High Reynolds Numbers
,”
ASME J. Turbomach.
,
133
(
3
), p.
031019
. 10.1115/1.4001243
9.
Fan
,
C. S.
, and
Metzger
,
D. E.
,
1987
, “
Effects of Channel Aspect Ratio on Heat Transfer in Rectangular Passage Sharp 180-Deg Turns
,”
ASME
Paper No. 87-GT-113.
10.
Han
,
J. C.
,
Chandra
,
P. R.
, and
Lau
,
S. C.
,
1988
, “
Local Heat/Mass Transfer Distributions Around Sharp 180 Deg Turns in Two-Pass Smooth and Rib-Roughened Channels
,”
ASME J. Heat Trans.
,
110
(
1
), pp.
91
98
. 10.1115/1.3250478
11.
Schabacker
,
J.
,
Bölcs
,
A.
, and
Johnson
,
B. V.
,
1998
, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180° Bend
,”
ASME
Paper No. 98-GT-544.
12.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
(
3
), pp.
590
596
. 10.1115/1.2836706
13.
Liou
,
T. M.
, and
Chen
,
C. C.
,
1999
, “
Heat Transfer in a Rotating Two-Pass Smooth Passage With a 180° Rectangular Turn
,”
Int. J. Heat Mass Trans.
,
42
(
2
), pp.
231
247
. 10.1016/S0017-9310(98)00148-3
14.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Trans.
,
104
(
4
), pp.
700
706
. 10.1115/1.3245188
15.
Metzger
,
D. E.
,
Fan
,
C.
, and
Haley
,
S.
,
1984
, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
252
257
. 10.1115/1.3239545
16.
Brigham
,
B. A.
, and
VanFossen
,
G. J.
,
1984
, “
Length to Diameter Ratio and Row Number Effects in Short Pin Fin Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
241
245
. 10.1115/1.3239541
17.
Chyu
,
M.
,
Hsing
,
Y.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
. 10.1115/1.2841414
18.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I.-P.
, and
Natarajan
,
V.
,
1999
, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
,
121
(
2
), pp.
257
263
. 10.1115/1.2841309
19.
Uzol
,
O.
, and
Camci
,
C.
,
2005
, “
Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays
,”
ASME J. Heat Trans.
,
127
(
5
), pp.
458
471
. 10.1115/1.1860563
20.
Jenkins
,
S. C.
,
Shevchuk
,
I. V.
,
Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2007
, “
Transient Thermal Field Measurements in a High Aspect Ratio Channel Related to Transient Thermochromic Liquid Crystal Experiments
,”
ASME
Paper No. GT2007-27812.
21.
Lamont
,
J. A.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2012
, “
Detailed Heat Transfer Measurements Inside Rotating Ribbed Channels Using the Transient Liquid Crystal Technique
,”
ASME J. Thermal Sci. Eng. Appl.
,
4
(
1
), p.
011002
. 10.1115/1.4005604
22.
Lamont
,
J. A.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2014
, “
Effect of Rotation on Detailed Heat Transfer Distribution for Various Rib Geometries in Developing Channel Flow
,”
ASME J. Heat Trans.
,
136
(
1
), p.
011901
. 10.1115/1.4025211
23.
Yang
,
L.
,
Tyagi
,
K.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2015
, “
Influence of Rotation on Heat Transfer in a Two-Pass Channel With Impingement Under High Reynolds Number
,”
ASME
Paper No. GT2015-42871.
24.
Mayo
,
I.
,
Lahalle
,
A.
,
Gori
,
G. L.
, and
Arts
,
T.
,
2016
, “
Aerothermal Characterization of a Rotating Ribbed Channel at Engine Representative Conditions-Part II: Detailed Liquid Crystal Thermography Measurements
,”
ASME J. Turbomach.
,
138
(
10
), p.
101009
. 10.1115/1.4032927
25.
Huang
,
S. C.
,
Wang
,
C. C.
, and
Liu
,
Y. H.
,
2017
, “
Heat Transfer Measurement in a Rotating Cooling Channel With Staggered and Inline Pin-Fin Arrays Using Liquid Crystal and Stroboscopy
,”
Int. J. Heat Mass Trans.
,
115
(
Part A
), pp.
364
376
. 10.1016/j.ijheatmasstransfer.2017.07.040
26.
Singh
,
P.
, and
Ekkad
,
S. V.
,
2017
, “
Experimental Investigation of Rotating Rib Roughened Two-Pass Square Duct With Two Different Channel Orientations
,”
ASME
Paper. No. GT2017-64225.
27.
Singh
,
P.
,
Ji
,
Y.
, and
Ekkad
,
S. V.
,
2018
, “
Multi-Pass Serpentine Cooling Designs for Negating Coriolis Force Effect on Heat Transfer: 45-Degree Angled Rib Turbulated Channels
,”
ASME
Paper. No. GT2018-76689.
28.
Hung
,
S. C.
,
Huang
,
S. C.
, and
Liu
,
Y. H.
,
2018
, “
Influences of the Non-Uniform Pin-Fin Array on Heat Transfer Distribution in A Rotating Rectangular Channel
,”
ASME
Paper No. GT2018-76372.
29.
Funazaki
,
K.
,
Ishizawa
,
K.
, and
Yamawaki
,
S.
,
1998
, “
Surface Heat Transfer Measurements of a Scaled Rib Roughened Serpentine Cooling Passage by Use of a Transient Liquid Crystal Technique
,”
ASME
Paper No. 98-GT-515.
30.
Poser
,
R.
,
Von Wolfersdorf
,
J.
,
Lutum
,
E.
, and
Semmler
,
K.
,
2008
, “
Performing Heat Transfer Experiments in Blade Cooling Circuits Using a Transient Technique With Thermochromic Liquid Crystals
,” ASME Paper No. GT2008-50364.
31.
LeBlanc
,
C.
,
Ekkad
,
S. V.
,
Lambert
,
T.
, and
Rajendran
,
V.
,
2011
, “
Detailed Heat Transfer Distributions in Engine Similar Cooling Channels for a Turbine Rotor Blade With Different Rib Orientation
,”
ASME
Paper No. GT2011-45254.
32.
Siw
,
S. C.
,
Chyu
,
M. K.
,
Um
,
J. Y.
, and
Lee
,
C. P.
,
2016
, “
Detailed Experimental Characterization of Heat Transfer Coefficient Over the Internal Cooling Passages of an Additive Manufactured Turbine Airfoil
,”
ASME
Paper No. GT2016-57787.
33.
Funazaki
,
K.
,
Odagiri
,
H.
,
Horiuchi
,
T.
, and
Kazari
,
M.
,
2018
, “
Detailed Studies on The Flow Field and Heat Transfer Characteristics Inside a Realistic Serpentine Cooling Channel With a S-Shaped Inlet
,”
ASME
Paper No. GT2018-76225.
34.
Song
,
I.
,
Son
,
C.
,
Yang
,
J.
,
Lee
,
C.
, and
Lee
,
K.
,
2018
, “
Thermal Performance of the Realistic Leading Edge Cooling Passage of a Turbine Blade
,”
ASME
Paper No. GT2018-77217.
35.
Park
,
N.
,
Son
,
C.
,
Yang
,
J.
,
Lee
,
C.
, and
Lee
,
K.
,
2018
, “
Full Surface Heat Transfer Measurement of a Turbine Internal Cooling System Using a Large Scaled Model
,”
ASME
Paper No. GT2018-77218.
36.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
You do not currently have access to this content.