Abstract

A numerical investigation on the transient-free convection flow of the multiphase nanofluid past a vertical cylinder, which has a power-law variation surface temperature along with the height, is presented. The problem has typical engineering applications involving cooling of vertical cylindrical rods in mechanical/manufacturing systems, cooling of nuclear reactors, and the design of other advanced cooling technologies. Buongiorno’s model is applied in this research, which incorporates thermophoresis and Brownian diffusion effects of nanoparticles. The zero-volume flux condition is implemented for nanoparticle concentration at the boundary to obtain realistic results. A robust second-order accurate finite-difference scheme of Crank–Nicolson type is applied to tackle the system of coupled non-linear partial differential equations numerically. The impacts of time, variable surface temperature power-law exponent, Brownian and thermophoresis parameters are investigated on nanofluid flow and heat transfer aspects. The decisive finding suggests that the effect of the power-law exponent of the variable wall temperature is to reduce the nanoparticle relocation, velocity, and temperature in the nanofluid boundary layer causing the heat transfer enhancement. The skin-friction decreased significantly with the rise of the power-law exponent of the wall temperature. The present numerical scheme is corroborated by comparing the average skin-friction results with the available literature for clear fluid.

References

References
1.
Bottemanne
,
F. A.
,
1972
, “
Experimental Results of Pure and Simultaneous Heat and Mass Transfer by Free Convection About a Vertical Cylinder for Pr = 0.71 and Sc = 0.63
,”
Appl. Sci. Res.
,
25
(
1
), pp.
372
382
. 10.1007/BF00382310
2.
Dring
,
R. P.
, and
Gebhart
,
B.
,
1966
, “
Transient Natural Convection From Thin Vertical Cylinders
,”
ASME J. Heat Transf.
,
88
(
2
), pp.
246
247
. 10.1115/1.3691522
3.
Park
,
K. T.
,
Kim
,
H. J.
, and
Kim
,
D.
,
2014
, “
Experimental Study of Natural Convection From Vertical Cylinders With Branched Fins
,”
Exp. Therm. Fluid Sci.
,
54
, pp.
29
37
. 10.1016/j.expthermflusci.2014.01.018
4.
Ganesan
,
P.
, and
Rani
,
H. P.
,
2000
, “
Transient Natural Convection Flow Over Vertical Cylinder With Variable Surface Temperatures
,”
Forsch. Ingenieurwes
,
66
(
1
), pp.
11
16
. 10.1007/s100100000033
5.
Chen
,
T. S.
, and
Yuh
,
C. F.
,
1980
, “
Combined Heat and Mass Transfer in Natural Convection Along a Vertical Cylinder
,”
Int. J. Heat Mass Transf.
,
23
(
4
), pp.
451
461
. 10.1016/0017-9310(80)90087-3
6.
Velusamy
,
K.
, and
Garg
,
V. K.
,
1992
, “
Transient Natural Convection Over a Heat Generating Vertical Cylinder
,”
Int. J. Heat Mass Transf.
,
35
(
5
), pp.
1293
1306
. 10.1016/0017-9310(92)90185-U
7.
Ganesan
,
P.
, and
Rani
,
H. P.
,
1998
, “
Transient Natural Convection Along Vertical Cylinder With Heat and Mass Transfer
,”
Heat Mass Transf.
,
33
(
5–6
), pp.
449
455
. 10.1007/s002310050214
8.
Wang
,
C. Y.
,
2012
, “
Natural Convection on a Vertical Stretching Cylinder
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
3
), pp.
1098
1103
. 10.1016/j.cnsns.2011.07.033
9.
Corasaniti
,
S.
, and
Gori
,
F.
,
2017
, “
Natural Convection Around a Vertical Cylinder (Thermal Probe) Immersed in a Porous Medium
,”
Int. Commun. Heat Mass Transf.
,
81
, pp.
72
78
. 10.1016/j.icheatmasstransfer.2016.12.006
10.
Jabbari
,
F.
,
Rajabpour
,
A.
, and
Saedodin
,
S.
,
2017
, “
Thermal Conductivity and Viscosity of Nanofluids: A Review of Recent Molecular Dynamics Studies
,”
Chem. Eng. Sci.
,
174
, pp.
67
81
. 10.1016/j.ces.2017.08.034
11.
Ilyas
,
S. U.
,
Pendyala
,
R.
, and
Marneni
,
N.
,
2017
, “Stability of Nanofluids,”
Engineering Applications of Nanotechnology
,
V.
Korada
and
N. H. B.
Hamid
, eds.,
Springer
,
Cham
, pp.
1
31
.
12.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transf.
,
128
(
3
), pp.
240
250
. 10.1115/1.2150834
13.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Natural Convective Boundary Layer Flow of a Nanofluid Past a Vertical Plate
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
243
247
. 10.1016/j.ijthermalsci.2009.07.015
14.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2014
, “
Natural Convective Boundary Layer Flow of a Nanofluid Past a Vertical Plate: A Revised Model
,”
Int. J. Therm. Sci.
,
77
, pp.
126
129
. 10.1016/j.ijthermalsci.2013.10.007
15.
Xu
,
H.
, and
Pop
,
I.
,
2014
, “
Mixed Convection Flow of a Nanofluid Over a Stretching Surface With Uniform Free Stream in the Presence of Both Nanoparticles and Gyrotactic Microorganisms
,”
Int. J. Heat Mass Transf.
,
75
, pp.
610
623
. 10.1016/j.ijheatmasstransfer.2014.03.086
16.
Zargartalebi
,
H.
,
Ghalambaz
,
M.
,
Noghrehabadi
,
A.
, and
Chamkha
,
A.
,
2015
, “
Stagnation-Point Heat Transfer of Nanofluids Toward Stretching Sheets With Variable Thermo-Physical Properties
,”
Adv. Powder Technol.
,
26
(
3
), pp.
819
829
. 10.1016/j.apt.2015.02.008
17.
Khan
,
W. A.
, and
Pop
,
I.
,
2010
, “
Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet
,”
Int. J. Heat Mass Transf.
,
53
(
11–12
), pp.
2477
2483
. 10.1016/j.ijheatmasstransfer.2010.01.032
18.
Sheremet
,
M. A.
, and
Pop
,
I.
,
2014
, “
Conjugate Natural Convection in a Square Porous Cavity Filled by a Nanofluid Using Buongiorno’s Mathematical Model
,”
Int. J. Heat Mass Transf.
,
79
, pp.
137
145
. 10.1016/j.ijheatmasstransfer.2014.07.092
19.
Khan
,
Z. H.
,
Culham
,
J. R.
,
Khan
,
W. A.
, and
Pop
,
I.
,
2015
, “
Triple Convective-Diffusion Boundary Layer Along a Vertical Flat Plate in a Porous Medium Saturated by a Water-Based Nanofluid
,”
Int. J. Therm. Sci.
,
90
, pp.
53
61
. 10.1016/j.ijthermalsci.2014.12.002
20.
Sudhagar
,
P.
,
Kameswaran
,
P. K.
, and
Kumar
,
B. R.
,
2019
, “
Gyrotactic Microorganism Effects on Mixed Convective Nanofluid Flow Past a Vertical Cylinder
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
4
), p.
041018
. 10.1115/1.4044185
21.
Gorla
,
R. S. R.
, and
Khan
,
W.
,
2012
, “
Natural Convective Boundary-Layer Flow Over a Vertical Cylinder Embedded in a Porous Medium Saturated With a Nanofluid
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
034501
. 10.1115/1.4007886
22.
Rashad
,
A. M.
,
Abbasbandy
,
S.
, and
Chamkha
,
A. J.
,
2014
, “
Non-Darcy Natural Convection From a Vertical Cylinder Embedded in a Thermally Stratified and Nanofluid-Saturated Porous Media
,”
ASME J. Heat Transf.
,
136
(
2
), p.
022503
. 10.1115/1.4025559
23.
Malvandi
,
A.
,
Heysiattalab
,
S.
, and
Ganji
,
D. D.
,
2016
, “
Thermophoresis and Brownian Motion Effects on Heat Transfer Enhancement at Film Boiling of Nanofluids Over a Vertical Cylinder
,”
J. Mol. Liq.
,
216
, pp.
503
509
. 10.1016/j.molliq.2016.01.030
24.
Malvandi
,
A.
,
Ghasemi
,
A.
,
Ganji
,
D. D.
, and
Pop
,
I.
,
2016
, “
Effects of Nanoparticles Migration on Heat Transfer Enhancement at Film Condensation of Nanofluids Over a Vertical Cylinder
,”
Adv. Powder Technol.
,
27
(
5
), pp.
1941
1948
. 10.1016/j.apt.2016.06.025
25.
Chamkha
,
A. J.
,
Rashad
,
A. M.
, and
Aly
,
A. M.
,
2013
, “
Transient Natural Convection Flow of a Nanofluid Over a Vertical Cylinder
,”
Meccanica
,
48
(
1
), pp.
71
81
. 10.1007/s11012-012-9584-8
26.
Carnahan
,
B.
,
Luther
,
H. A.
, and
Wilkes
,
J. O.
,
1969
,
Applied Numerical Methods
,
John Wiley and Sons
,
New York
.
You do not currently have access to this content.