Abstract

Results of an experimental investigation on heat transfer characteristics of kerosene flowing in vertical upward high-flux tubes at supercritical pressures are presented. Three metal powder-coated tubes (high-flux tubes) and one smooth tube have been tested and compared. The three high-flux tubes all perform much better than the smooth tube at the same parameters of the tube and same working conditions. The observed enhancement in heat transfer is mainly due to the disturbance introduced in the low field by the metal powder coatings and the differences in the thermophysical properties. The heat transfer coefficient in the metal-coated tube (200 mesh) has been found to be 2.5 times that in the smooth tube. Yet, it has been found that both too large and too small of a particle diameter of the metal powder coating on the tube surface could cause the heat transfer to deteriorate. The high-flux tube with a particle diameter of 200 mesh was found to exhibit the best cooling performance. The pressure drop was observed to increase with the increase of the particle diameter. However, the pressure drop was found to be three orders of magnitude smaller than the working pressure in the test section, thus the pressure drop for all practical purposes may be neglected. The density, viscosity, and thermal conductivity of kerosene at different temperatures and supercritical pressures were evaluated using the extended corresponding state principle, which has been proven to show good consistency with the experimental results.

References

References
1.
Chen
,
J.
,
Xiong
,
Z.
,
Xiao
,
Y.
, and
Gu
,
H.
,
2019
, “
Experimental Study on the Grid-Enhanced Heat Transfer at Supercritical Pressures in Rod Bundle
,”
Appl. Therm. Eng.
,
156
(
6
), pp.
299
309
. 10.1016/j.applthermaleng.2019.04.073
2.
Lei
,
X.
,
Zhang
,
J.
,
Gou
,
L.
,
Zhang
,
Q.
, and
Li
,
H.
,
2019
, “
Experimental Study on Convection Heat Transfer of Supercritical CO2 in Small Upward Channels
,”
Energy
,
176
(
6
), pp.
119
130
. 10.1016/j.energy.2019.03.109
3.
Zhao
,
W.
,
Song
,
Z.
,
Li
,
H.
,
Gu
,
H. F.
,
Tuo
,
X. B.
,
Zheng
,
Y. L.
, and
Wang
,
H. J.
,
2018
, “
Research on Heat Transfer Characteristics of Kerosene at Supercritical Pressure in Circular Tubes
,”
Exp. Therm. Fluid Sci.
,
96
(
9
), pp.
507
515
. 10.1016/j.expthermflusci.2018.03.030
4.
Cui
,
Y. L.
,
Wang
,
H. X.
, and
Wang
,
Y. T.
,
2019
, “
Experimental and Numerical Studies on Convective Heat Transfer of Supercritical R-134a in a Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
136
(
6
), pp.
34
45
. 10.1016/j.ijheatmasstransfer.2019.02.083
5.
Dharavath
,
M.
,
Manna
,
P.
,
Sinha
,
P. K.
, and
Chakraborty
,
D.
,
2015
, “
Numerical Analysis of a Kerosene-Fueled Scramjet Combustor
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
1
), p.
011003
. 10.1115/1.4030699
6.
Li
,
W.
,
Huang
,
D.
,
Xu
,
G.
,
Tao
,
Z.
,
Wu
,
Z.
, and
Zhu
,
H.
,
2015
, “
Heat Transfer to Aviation Kerosene Flowing Upward in Smooth Tubes at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
85
(
6
), pp.
1084
1094
. 10.1016/j.ijheatmasstransfer.2015.01.079
7.
Huang
,
D.
, and
Li
,
W.
,
2017
, “
Heat Transfer Deterioration of Aviation Kerosene Flowing in Mini Tubes at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
111
(
8
), pp.
266
278
. 10.1016/j.ijheatmasstransfer.2017.03.117
8.
Shah
,
A.
,
Chughtai
,
I. R.
, and
Hameed
,
M.
,
2010
, “
Numerical Simulation of Direct-Contact Condensation From a Supersonic Steam Jet in Subcooled Water
,”
Chin. J. Chem. Eng.
,
18
(
4
), pp.
577
587
. 10.1016/S1004-9541(10)60261-3
9.
Bai
,
J.
,
Pan
,
J.
,
Wu
,
G.
, and
Tang
,
L.
,
2019
, “
Numerical Investigation on the Heat Transfer of Supercritical Water in Non-Uniform Heating Tube
,”
Int. J. Heat Mass Transfer
,
138
(
8
), pp.
1320
1332
. 10.1016/j.ijheatmasstransfer.2019.04.108
10.
Li
,
F.
, and
Bai
,
B.
,
2019
, “
A Model of Heat Transfer Coefficient for Supercritical Water Considering the Effect of Heat Transfer Deterioration
,”
Int. J. Heat Mass Transfer
,
133
(
4
), pp.
316
329
. 10.1016/j.ijheatmasstransfer.2018.12.121
11.
Zhang
,
S.
,
Xu
,
X.
,
Liu
,
C.
,
Liu
,
X. X.
,
Zhang
,
Y. D.
, and
Dang
,
C. B.
,
2019
, “
The Heat Transfer of Supercritical CO2 in Helically Coiled Tube: Trade-Off Between Curvature and Buoyancy Effect
,”
Energy
,
176
(
6
), pp.
765
777
. 10.1016/j.energy.2019.03.150
12.
Hernandez-Jimenez
,
F.
,
Garcia-Gutierrez
,
L. M.
,
Acosta-Iborra
,
A.
, and
Soria-Verdugo
,
A.
,
2019
, “
Numerical Study of the Effect of Pressure and Temperature on the Fluidization of Solids With Air and Supercritical CO2
,”
J. Supercrit. Fluids
,
147
(
5
), pp.
271
283
. 10.1016/j.supflu.2018.11.008
13.
Wang
,
H.
,
Bi
,
Q. C.
,
Yang
,
Z. D.
, and
Wang
,
L. C.
,
2015
, “
Experimental and Numerical Investigation of Heat Transfer From a Narrow Annulus to Supercritical Pressure Water
,”
Ann. Nucl. Energy
,
80
(
6
), pp.
416
428
. 10.1016/j.anucene.2015.02.029
14.
Wang
,
K. Z.
,
Xu
,
X. X.
,
Wu
,
Y. Y.
,
Liu
,
C.
, and
Dang
,
C. B.
,
2015
, “
Numerical Investigation on Heat Transfer of Supercritical CO2 in Heated Helically Coiled Tubes
,”
J. Supercrit. Fluids
,
99
(
4
), pp.
112
120
. 10.1016/j.supflu.2015.02.001
15.
Gang
,
W.
,
Pan
,
J.
,
Bi
,
Q. C.
,
Yang
,
Z. D.
, and
Wang
,
H.
,
2014
, “
Heat Transfer Characteristics of Supercritical Pressure Water in Vertical Upward Annuli
,”
Nucl. Eng. Des.
,
273
(
7
), pp.
449
458
. 10.1016/j.nucengdes.2014.03.038
16.
Yin
,
F.
,
Chen
,
T. K.
, and
Li
,
H. X.
,
2006
, “
An Investigation on Heat Transfer to Supercritical Water in Inclined Upward Smooth Tubes
,”
Heat Transfer Eng.
,
27
(
9
), pp.
44
52
. 10.1080/01457630600846018
17.
Kim
,
J. K.
,
Jeon
,
H. K.
, and
Lee
,
J. S.
,
2007
, “
Wall Temperature Measurement and Heat Transfer Correlation of Turbulent Supercritical Carbon Dioxide Flow in Vertical Circular/Non-Circular Tubes
,”
Nucl. Eng. Des.
,
237
(
15
), pp.
1795
1802
. 10.1016/j.nucengdes.2007.02.017
18.
Pioro
,
I. L.
,
Khartabil
,
H. F.
, and
Duffey
,
R. B.
,
2004
, “
Heat Transfer to Supercritical Fluids Flowing in Channels—Empirical Correlations (Survey)
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
69
91
. 10.1016/j.nucengdes.2003.10.010
19.
Hu
,
Z. H.
,
1999
, “
An Investigation on Heat Transfer Characteristics of Kerosene at Supercritical Pressure
,”
J. Xi’an JiaoTong Univ.
,
9
(
2
), pp.
62
65
.
20.
Zhong
,
F.
,
Fan
,
X.
,
Yu
,
G.
,
Li
,
J.
, and
Sung
,
C. J.
,
2009
, “
Heat Transfer of Aviation Kerosene at Supercritical Conditions
,”
J. Thermophys. Heat Transfer
,
23
(
3
), pp.
543
550
. 10.2514/1.41619
21.
Ely
,
J. F.
, and
Hanley
,
H.
,
1981
, “
Prediction of Transport Properties. 1. Viscosity of Fluids and Mixtures
,”
Ind. Eng. Chem. Fundam.
,
20
(
4
), pp.
323
332
. 10.1021/i100004a004
22.
Huang
,
D.
,
Ruan
,
B.
,
Wu
,
X. Y.
,
Zhang
,
W.
,
Xu
,
G. Q.
,
Tao
,
Z.
,
Jiang
,
P. X.
,
Ma
,
L. X.
, and
Li
,
W.
,
2015
, “
Experimental Study on Heat Transfer of Aviation Kerosene in a Vertical Upward Tube at Supercritical Pressures
,”
Chin. J. Chem. Eng.
,
23
(
2
), pp.
425
434
. 10.1016/j.cjche.2014.10.016
23.
Meng
,
H.
, and
Yang
,
V.
,
2003
, “
A Unified Treatment of General Fluid Thermodynamics and Its Application to a Preconditioning Scheme
,”
J. Comput. Phys.
,
189
(
1
), pp.
277
304
. 10.1016/S0021-9991(03)00211-0
24.
Deng
,
H. W.
,
Zhu
,
K.
,
Xu
,
G. Q.
,
Tao
,
Z.
,
Zhang
,
C. B.
, and
Liu
,
G. Z.
,
2012
, “
Isobaric Specific Heat Capacity Measurement for Kerosene RP-3 in the Near-Critical and Supercritical Regions
,”
J. Chem. Eng. Data
,
57
(
2
), pp.
263
268
. 10.1021/je200523a
25.
Xu
,
G. Q.
,
Jia
,
Z. X.
,
Wen
,
J.
,
Deng
,
H. W.
, and
Fu
,
Y. C.
,
2015
, “
Thermal-Conductivity Measurement of Aviation Kerosene RP-3 From (285 to 513) K at Sub- and Supercritical Pressures
,”
Int. J. Thermophys.
,
36
(
4
), pp.
620
632
. 10.1007/s10765-015-1840-4
26.
Deng
,
H. W.
,
Zhang
,
C. B.
,
Xu
,
G. Q.
,
Tao
,
Z.
,
Zhang
,
B.
, and
Liu
,
G. Z.
,
2011
, “
Density Measurements of Endothermic Hydrocarbon Fuel at Sub- and Supercritical Conditions
,”
J. Chem. Eng. Data
,
56
(
6
), pp.
2980
2986
. 10.1021/je200258g
27.
Kim
,
D. Y.
,
Nematollahi
,
O.
, and
Kim
,
K. C.
,
2019
, “
Flow-Pattern-Based Experimental Analysis of Convective Boiling Heat Transfer in a Rectangular Channel Filled With Open-Cell Metallic Random Porous Media
,”
Int. J. Heat Mass Transfer
,
142
(
10
), p.
118402
. 10.1016/j.ijheatmasstransfer.2019.07.052
28.
Xu
,
P. F.
,
Li
,
Q.
, and
Xuan
,
Y. M.
,
2015
, “
Enhanced Boiling Heat Transfer on Composite Porous Surface
,”
Int. J. Heat Mass Transfer
,
80
(
1
), pp.
107
114
. 10.1016/j.ijheatmasstransfer.2014.08.048
29.
Jiang
,
P. X.
,
Xu
,
Y. J.
,
Lv
,
J.
,
Shi
,
R. F.
,
He
,
S.
, and
Jackson
,
J. D.
,
2004
, “
Experimental Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in Vertical Mini-Tubes and in Porous Media
,”
Appl. Therm. Eng.
,
24
(
8–9
), pp.
1255
1270
. 10.1016/j.applthermaleng.2003.12.024
30.
Jia
,
Y. T.
,
Xia
,
G. D.
,
Zong
,
L. X.
,
Ma
,
D. D.
, and
Tang
,
Y. X.
,
2018
, “
A Comparative Study of Experimental Flow Boiling Heat Transfer and Pressure Drop Characteristics in Porous-Wall Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
127
(
12
), pp.
818
833
. 10.1016/j.ijheatmasstransfer.2018.06.090
31.
Deng
,
D. X.
,
Feng
,
J. Y.
,
Huang
,
Q. S.
,
Tang
,
Y.
, and
Lian
,
Y. S.
,
2016
, “
Pool Boiling Heat Transfer of Porous Structures With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
,
99
(
8
), pp.
556
568
. 10.1016/j.ijheatmasstransfer.2016.04.015
You do not currently have access to this content.