Abstract

Many solar technologies are developed to encourage the usage of solar energy throughout the world. The solar chimney power plant (SCPP) is a newfangled technology that utilizes solar energy to generate more clean energy. This paper presents a new design of the SCPP turbine based on the aerodynamic optimization approach of a wind turbine with a diffuser. To calculate the required design parameters, a comprehensive mathematical model has been developed, which has the ability to describe the flow inside solar chimneys. An iteration algorithm is implemented for solving blade element theory with a diffuser to obtain the optimization of the turbine blade chord and twist angle distributions in the presence of a diffuser. The comparison of the mathematical model results and experimental data of Manzanares prototype reveal the good agreement, validating our mathematical model. The present design suggests that the power output could be increased by 15%. Our conclusion is that the blade element theory with diffuser has an ability to design efficient turbine suitable for working within SCPP.

References

References
1.
Haaf
,
W.
,
Friedrich
,
K.
,
Mayr
,
G.
, and
Schlaich
,
J.
,
1983
, “
Solar Chimneys; Part I: Principle and Construction of the Pilot Plant in Manzanares
,”
Int. J. Sol. Energy
,
2
(
1
), pp.
3
20
. 10.1080/01425918308909911
2.
Haaf
,
W.
,
1984
, “
Solar Chimneys; Part II: Preliminary Test Results From the Manzanares Pilot Plant
,”
Int. J. Sol. Energy
,
2
(
2
), pp.
141
161
. 10.1080/01425918408909921
3.
Mekhail
,
T.
,
Elmagid
,
W. M. A.
,
Fathy
,
M.
,
Bassily
,
M.
, and
Harte
,
R.
,
2016
, “
Theoretical Investigation of Solar Chimney Power Plant Installed in Aswan City
,”
International Symposium on Industrial Chimneys and Cooling Towers
,
Rotterdam, Germany
,
Oct. 5–8
.
4.
de_Richter
,
R.
,
Ming
,
T.
,
Davies
,
P.
,
Liu
,
W.
, and
Caillol
,
S.
,
2017
, “
Removal of Non-CO2 Greenhouse Gases by Large-Scale Atmospheric Solar Photocatalysis
,”
Prog. Energy Combust. Sci.
,
60
, pp.
68
96
. 10.1016/j.pecs.2017.01.001
5.
Cao
,
F.
,
Liu
,
Q.
,
Yang
,
T.
,
Zhu
,
T.
,
Bai
,
J.
, and
Zhao
,
L.
,
2018
, “
Full-Year Simulation of Solar Chimney Power Plants in Northwest China
,”
Renew. Energy
,
119
, pp.
421
428
. 10.1016/j.renene.2017.12.022
6.
Ming
,
T.
,
Wu
,
Y.
,
de_Richter
,
R. K.
,
Liu
,
W.
, and
Sherif
,
S. A.
,
2017
, “
Solar Udraft Power Pant System: A Brief Review and a Case Study on a New System With Radial Partition Walls in Its Collector
,”
Renew. Sustain. Energy Rev.
,
69
, pp.
472
487
. 10.1016/j.rser.2016.11.135
7.
Ismail
,
A.
,
El-Marhoumy
,
A.-A.
,
Hamed
,
A. M.
, and
Eldein Hussin
,
A. M. T. A.
,
2019
, “
Numerical Modeling for a Solar Chimney
,”
J. Al-Azhar Univ. Eng. Sect.
,
14
(
50
), pp.
87
98
. 10.21608/auej.2019.28512
8.
Li
,
J.-y.
,
Guo
,
P.-h.
, and
Wang
,
Y.
,
2012
, “
Effects of Collector Radius and Chimney Height on Power Output of a Solar Chimney Power Plant With Turbines
,”
Renew. Energy
,
47
, pp.
21
28
. 10.1016/j.renene.2012.03.018
9.
Alktranee
,
M. H. R.
, and
Yaseen
,
D. T.
,
2019
, “
Evaluating the Performance of Solar Chimney Power Plant
,”
Int. J. Contemp. Res. Rev.
,
10
(
6
), pp.
20273
20288
. 10.15520/ijcrr.v10i06.704
10.
Toghraie
,
D.
,
Karami
,
A.
,
Afrand
,
M.
, and
Karimipour
,
A.
,
2018
, “
Effects of Geometric Parameters on the Performance of Solar Chimney Power Plants
,”
Energy
,
162
, pp.
1052
1061
. 10.1016/j.energy.2018.08.086
11.
Nizetic
,
S.
, and
Klarin
,
B.
,
2010
, “
A Simplified Analytical Approach for Evaluation of the Optimal Ratio of Pressure Drop Across the Turbine in Solar Chimney Power Plants
,”
Appl. Energy
,
87
(
2
), pp.
587
591
. 10.1016/j.apenergy.2009.05.019
12.
Zhou
,
X.
, and
Xu
,
Y.
,
2016
, “
Solar Updraft Tower Power Generation
,”
Sol. Energy
,
128
, pp.
95
125
. 10.1016/j.solener.2014.06.029
13.
Li
,
J.
,
Guo
,
P.
,
Wang
,
Y.
, and
Liu
,
Y.
,
2013
, “
Numerical Analysis of the Optimal Turbine Pressure Drop Ratio in a Solar Chimney Power Plant
,”
Sol. Energy
,
98
(
Part A
), pp.
42
48
. 10.1016/j.apenergy.2009.05.019
14.
Guo
,
P.
,
Li
,
J.
,
Wang
,
Y.
, and
Wang
,
Y.
,
2015
, “
Numerical Study on the Performance of a Solar Chimney Power Plant
,”
Energy Convers. Manage.
,
105
, pp.
197
205
. 10.1016/j.enconman.2015.07.072
15.
Tingzhen
,
M.
,
Wei
,
L.
,
Guoling
,
X.
,
Yanbin
,
X.
,
Xuhu
,
G.
, and
Yuan
,
P.
,
2008
, “
Numerical Simulation of the Solar Chimney Power Plant Systems Coupled With Turbine
,”
Renew. Energy
,
33
(
5
), pp.
897
905
. 10.1016/j.renene.2007.06.021
16.
Fluri
,
T. P.
, and
von Backström
,
T. W.
,
2008
, “
Comparison of Modelling Approaches and Layouts for Solar Chimney Turbines
,”
Sol. Energy
,
82
(
3
), pp.
239
246
. 10.1016/j.solener.2007.07.006
17.
Gannon
,
A. J.
, and
von Backström
,
T. W.
,
2002
, “
Solar Chimney Turbine: Part 1 of 2—Design
,”
2002 International Solar Energy Conference
,
Reno, NV
,
June 15–20
.
18.
Denantes
,
F.
, and
Bilgen
,
E.
,
2006
, “
Counter-Rotating Turbines for Solar Chimney
,”
Renew. Energy
,
31
(
12
), pp.
1873
1891
. 10.1016/j.renene.2005.09.018
19.
Zhou
,
Y.
,
Gao
,
B.
,
Dong
,
H. R.
, and
Hao
,
K.
,
2016
, “
Design for the Turbine of Solar Chimney Power Plant System With Vertical Collector
,”
IOP Conf. Series: Earth Environ. Sci.
,
40
(
1
). 10.1088/1755-1315/40/1/012085
20.
Gannon
,
A. J.
, and
von Backström
,
T. W.
,
2003
, “
Solar Chimney Turbine Performance
,”
ASME J. Sol. Energy Eng.
,
125
(
1
), pp.
101
106
. 10.1115/1.1530195
21.
von Backström
,
T. W.
, and
Gannon
,
A. J.
,
2004
, “
Solar Chimney Turbine Characteristics
,”
Sol. Energy
,
76
(
1–3
), pp.
235
241
. 10.1016/j.solener.2003.08.009
22.
Akeel
,
S. A. M. S.
, and
Najjar
,
Y. S. H.
,
2013
, “
Comparison of Free- and Forced-Vortex Designs for Computation of Mass Flux in an Axial Gas Turbine Stage
,”
Energy Educ. Sci. Technol.
, Part A,
31
(
1
), pp.
55
66
.
23.
van Bussel
,
G. J. W.
,
1999
, “
An Assessment of the Performance of Diffuser Augmented Wind Turbines (DAWT’s)
,”
3rd ASME/JSME Joint Fluids Engineering Conference
,
San Francisco, CA
,
July 18–23
.
24.
Vaz
,
J. R. P.
, and
Wood
,
D. H.
,
2016
, “
Aerodynamic Optimization of the Blades of Diffuser-Augmented Wind
,”
Energy Convers. Manage.
,
123
, pp.
35
45
. 10.1016/j.enconman.2016.06.015
25.
Phillips
,
D. G.
,
2003
, “
An Investigation on Diffuser Augmented Wind Turbine Design
,” PhD. thesis,
Department of Mechanical Engineering, School of Engineering, The University of Auckland
.
26.
Vaz
,
D. A. D. d. R.
,
Mesquita
,
A. L.
,
Vaz
,
J. R.
,
Blanco
,
C. J. C.
, and
Pinho
,
J. T.
,
2014
, “
An Extension of the Blade Element Momentum Method Applied to Diffuser Augmented Wind Turbines
,”
Energy Convers. Manage.
,
87
, pp.
1116
1123
. 10.1016/j.enconman.2014.03.064
27.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
,
2001
,
Wind Energy Handbook
,
John Wiley & Sons, Ltd
,
West Sussex, England
.
28.
Clifton-Smith
,
M. J.
,
2009
, “
Wind Turbine Blade Optimisation With Tip Loss Corrections
,”
Wind Eng.
,
33
(
5
), pp.
477
496
. 10.1260/030952409790291226
29.
Shen
,
W. Z.
,
Mikkelsen
,
R.
, and
Sørensen
,
J. N.
,
2005
, “
Tip Loss Corrections for Wind Turbine Computations
,”
Wind Energy
,
8
(
4
), pp.
457
475
. 10.1002/we.153
30.
ten Hoopen
,
P. D. C.
,
2009
, “
An Experimental and Computational Investigation of a Diffuser Augmented Wind Turbine: With an Application of Vortex Generators on the Diffuser Trailing Edge
,” M.Sc. thesis,
Faculty of Aerospace Engineering, Delft University of Technology
,
Delft, The Netherlands
.
31.
Barbosa
,
D. L.
,
Vaz
,
J. R.
,
Figueiredo
,
S. W.
,
De Oliveira e Silva
,
M.
,
Lins
,
E. F.
, and
Mesquita
,
A. L.
,
2015
, “
An Investigation of a Mathematical Model for the Internal Velocity Profile of Conical Diffusers Applied to DAWTs
,”
Ann. Braz. Acad. Sci.
,
87
(
2
), pp.
1133
1148
. 10.1590/0001-3765201520140114
32.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
33.
Koonsrisuk
,
A.
, and
Chitsomboon
,
T.
,
2013
, “
Mathematical Modeling of Solar Chimney Power Plants
,”
Energy
,
51
, pp.
314
322
. 10.1016/j.energy.2012.10.038
34.
Swinbank
,
W. C.
,
1963
, “
Long-Wave Radiation From Clear Skies
,”
Q. J. R. Metereol. Soc.
,
89
(
381
), pp.
339
348
. 10.1002/qj.49708938105
35.
Tingzhen
,
M.
,
Wei
,
L.
, and
Yuan
,
P.
,
2007
, “
Numerical Analysis of the Solar Chimney Power Plant With Energy Storage Layer
,”
Proceedings of ISES World Congress 2007
,
Springer, Berlin, Heidelberg
, pp.
1800
1805
.
36.
Pasumarthi
,
N.
, and
Sherif
,
S. A.
,
1998
, “
Experimental and Theoretical Performance of a Demonstration Solar Chimney Model—Part I: Mathematical Model Development
,”
Int. J. Energy Res.
,
22
(
3
), pp.
277
288
. 10.1002/(SICI)1099-114X(19980310)22:3<277::AID-ER380>3.0.CO;2-R
37.
Bernardes
,
M. A. d. S.
,
Voß
,
A.
, and
Weinrebe
,
G.
,
2003
, “
Thermal and Technical Analyses of Solar Chimneys
,”
Sol. Energy
,
75
(
6
), pp.
511
524
. 10.1016/j.solener.2003.09.012
38.
Weinrebe
,
G.
, and
Schiel
,
W.
,
2001
, “
Up-Draught Solar Chimney and Down-Draught Energy Tower—A Comparison
,”
ISES 2001 Solar World Congress
,
Stuttgart, Germany
.
39.
Krätzig
,
W. B.
,
2013
, “
Physics, Computer Simulation and Optimization of Thermo-Fluid Mechanical Processes of Solar Updraft Power Plants
,”
Sol. Energy
,
98
(
A
), pp.
2
11
. 10.1016/j.solener.2013.02.017
40.
Elmagid
,
W. M. A.
, and
Keppler
,
I.
,
2017
, “
Axial Flow Turbine for Solar Chimney
,”
Hungarian Agri. Eng.
,
32/2017
, pp.
29
37
. 10.17676/hae.2017.32.29
41.
Batchelor
,
G. K.
,
2000
,
An Introduction to Fluid Dynamic
,
Cambridge University Press
,
Cambridge, UK
.
42.
Wood
,
D. H.
,
2015
, “
Maximum Wind Turbine Performance at Low Tip Speed Ratio
,”
J. Renew. Sustain. Energy
,
7
(
5
), p.
053126
. 10.1063/1.4934805
You do not currently have access to this content.