Abstract

Liquefied petroleum gas (LPG) is widely used in domestic cookstoves as it is a clean and high energy content fuel in comparison with other traditional cooking fuels. With the increasing demand of LPG, study and improvement of cookstove performance have become an important subject. In the present work, a numerical study of the flow and thermal fields for a domestic cookstove burner has been investigated and the performance of the stove is analyzed at different parametric conditions, like the equivalence ratio of the primary fuel–air mixture, fuel flow rate, thermal load height, and loading vessel size. The maximum thermal efficiency has been found for an equivalence ratio of 1.4 for the LPG–air mixture and at load height of 20 mm. The heat flux distribution at the bottom of the vessel is found to be bimodal with the higher peak occurring closer to the center of the vessel. The thermal efficiency of the stove increases with the rise in the fuel flow rate, and it decreases with reducing cooking vessel diameter. As the vessel diameter increases, the fraction of the total heat supplied through the vessel bottom increases. The radiative component of the heat flux is found to be much smaller compared to the convective component.

References

References
1.
Basu
,
D.
,
Saha
,
R.
,
Ganguly
,
R.
, and
Datta
,
A.
,
2008
, “
Performance Improvement of LPG Cook Stoves Through Burner and Nozzle Modifications
,”
J. Energy Inst.
,
81
(
4
), pp.
218
225
. 10.1179/014426008X370951
2.
Jugjai
,
S.
,
Tia
,
S.
, and
Trewetasksorn
,
W.
,
2001
, “
Thermal Efficiency Improvement of an LPG Gas Cooker by a Swirling Central Flame
,”
Int. J. Energy Res.
,
25
(
8
), pp.
657
674
. 10.1002/er.708
3.
Chander
,
S.
, and
Ray
,
A.
,
2005
, “
Flame Impingement Heat Transfer: A Review
,”
Energy Convers. Manage.
,
46
(
18–19
), pp.
2803
2837
. 10.1016/j.enconman.2005.01.011
4.
Chander
,
S.
, and
Ray
,
A.
,
2007
, “
Heat Transfer Characteristics of Laminar Methane/Air Flame Impinging Normal to a Cylindrical Surface
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
707
721
. 10.1016/j.expthermflusci.2007.09.003
5.
Chander
,
S.
, and
Ray
,
A.
,
2011
, “
Experimental and Numerical Study on the Occurrence of Off-Stagnation Peak in Heat Flux for Laminar Methane/Air Flame Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1179
1186
. 10.1016/j.ijheatmasstransfer.2010.10.035
6.
Saha
,
C.
,
Ganguly
,
R.
, and
Datta
,
A.
,
2008
, “
Heat Transfer and Emission Characteristics of Impinging Rich Methane and Ethylene Jet Flames
,”
Exp. Heat Transfer
,
21
(
3
), pp.
169
187
. 10.1080/08916150802072834
7.
Agrawal
,
G. K.
,
Chakraborty
,
S.
, and
Som
,
S. K.
,
2010
, “
Heat Transfer Characteristics of Premixed Flame Impinging Upwards to Plane Surfaces Inclined With the Flame Jet Axis
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1899
1907
. 10.1016/j.ijheatmasstransfer.2009.12.068
8.
Li
,
H. B.
,
Zhen
,
H. S.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2010
, “
Effects of Plate Temperature on Heat Transfer and Emissions of Impinging Flames
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4176
4184
. 10.1016/j.ijheatmasstransfer.2010.05.040
9.
Hindasageri
,
V.
,
Vedula
,
R. P.
, and
Prabhu
,
S. V.
,
2015
, “
Heat Transfer Distribution for Three Interacting Methane–Air Premixed Impinging Flame Jets
,”
Int. J. Heat Mass Transfer
,
88
, pp.
914
925
. 10.1016/j.ijheatmasstransfer.2015.04.098
10.
Hindasageri
,
V.
,
Kuntikana
,
P.
,
Vedula
,
R. P.
, and
Prabhu
,
S. V.
,
2015
, “
An Experimental and Numerical Investigation of Heat Transfer Distribution of Perforated Plate Burner Flames Impinging on a Flat Plate
,”
Int. J. Therm. Sci.
,
94
, pp.
156
169
. 10.1016/j.ijthermalsci.2015.02.021
11.
Kuntikana
,
P.
, and
Prabhu
,
S. V.
,
2016
, “
Heat Transfer Characteristics of Premixed Methane–Air Flame Jet Impinging Obliquely Onto a Flat Surface
,”
Int. J. Heat Mass Transfer
,
101
, pp.
133
146
. 10.1016/j.ijheatmasstransfer.2016.05.004
12.
Raj
,
V. C.
,
Kuntikana
,
P.
,
Sreedhara
,
S.
, and
Prabhu
,
S. V.
,
2019
, “
Heat Transfer Characteristics of Impinging Methane Diffusion and Partially Premixed Flames
,”
Int. J. Heat Mass Transfer
,
129
, pp.
873
893
. 10.1016/j.ijheatmasstransfer.2018.10.009
13.
Ashman
,
P. J.
,
Junus
,
R.
,
Stubington
,
J. F.
, and
Sergeant
,
G. D.
,
1994
, “
The Effects of Load Height on the Emissions From a Natural Gas-Fired Domestic Cooktop Burner
,”
Combust. Sci. Technol.
,
103
(
1–6
), pp.
283
298
. 10.1080/00102209408907699
14.
Junus
,
R.
,
Vierkant
,
J. E.
,
Stubington
,
J. F.
,
Sergeant
,
G. D.
, and
Tas
,
I.
,
1998
, “
The Effects of the Design of the Cap of a Natural Gas-Fired Cooktop Burner on Flame Stability
,”
Int. J. Energy Res.
,
22
(
2
), pp.
175
184
. 10.1002/(SICI)1099-114X(199802)22:2<175::AID-ER365>3.0.CO;2-M
15.
Junus
,
R.
,
Stubington
,
J. F.
,
Sergeant
,
G. D.
, and
Tas
,
I.
,
2000
, “
Emissions and Efficiency of a Prototype Natural Gas-Fired Domestic Cooktop Burner With Insert
,”
Int. J. Environ. Stud.
,
57
(
2
), pp.
189
205
. 10.1080/00207230008711266
16.
Hou
,
S. S.
, and
Ko
,
Y. C.
,
2005
, “
Influence of Oblique Angle and Heating Height on Flame Structure, Temperature Field and Efficiency of an Impinging Laminar Jet Flame
,”
Energy Convers. Manage.
,
46
(
6
), pp.
941
958
. 10.1016/j.enconman.2004.06.001
17.
Li
,
H. B.
,
Wong
,
T. T.
,
Leung
,
C. W.
, and
Probert
,
S. D.
,
2006
, “
Thermal Performances and CO Emissions of Gas-Fired Cooker-Top Burners
,”
Appl. Energy
,
83
(
12
), pp.
1326
1338
. 10.1016/j.apenergy.2006.03.002
18.
Boggavarapu
,
P.
,
Ray
,
B.
, and
Ravikrishna
,
R. V.
,
2014
, “
Thermal Efficiency of LPG and PNG-Fired Burners: Experimental and Numerical Studies
,”
Fuel
,
116
, pp.
709
715
. 10.1016/j.fuel.2013.08.054
19.
Özdemir
,
B.
,
2017
, “
Simulation of Turbulent Combustion in a Self-Aerated Domestic Gas Oven
,”
Appl. Therm. Eng.
,
113
, pp.
160
169
. 10.1016/j.applthermaleng.2016.10.205
20.
ANSYS
,
2016
, Meshing User’s Guide V17.2.
21.
ANSYS
,
2016
, Fluent User’s Guide V17.2.
22.
Zhen
,
H. S.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2012
, “
Heat Transfer Characteristics of an Impinging Premixed Annular Flame Jet
,”
Appl. Therm. Eng.
,
36
(
1
), pp.
386
392
. 10.1016/j.applthermaleng.2011.10.053
23.
Mishra
,
T.
,
Datta
,
A.
, and
Mukhopadhyay
,
A.
,
2006
, “
Comparison of the Structures of Methane–Air and Propane–Air Partially Premixed Flames
,”
Fuel
,
85
(
9
), pp.
1254
1263
. 10.1016/j.fuel.2005.11.017
You do not currently have access to this content.