Abstract

In this paper, steady natural convective heat transfer and flow characteristics of Al2O3-Cu/water hybrid nanofluid filled square enclosure in the presence of magnetic field has been investigated numerically. The enclosure is equipped with a wavy circular conductive cylinder. The natural convection in the cavity is induced by a temperature difference between the vertical left hot wall and the other right cold wall. The steady 2-D equations of laminar natural convection problem for Newtonian and incompressible mixture are discretized using the finite volume method. The effective thermal conductivity and viscosity of the hybrid nanofluid are calculated using Corcione correlations taking into consideration the Brownian motion of the nanoparticles. A numerical parametric investigation is carried out for different values of the nanoparticles volumic concentration, Hartmann number, Rayleigh number, and the ratio of fluid to solid thermal conductivities. According to the results, the corrugated conductive block plays an important role in controlling the convective flow characteristic and the heat transfer rate within the system.

References

References
1.
Sharma
,
A.
,
2011
, “
A Comprehensive Study of Solar Power in India and World
,”
Renewable Sustainable Energy Rev.
,
15
(
4
), pp.
1767
1776
. 10.1016/j.rser.2010.12.017
2.
Thirugnanasambandam
,
M.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2010
, “
A Review of Solar Thermal Technologies
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
312
322
. 10.1016/j.rser.2009.07.014
3.
Raja Sekhar
,
Y.
,
Sharma
,
K. V.
,
Thundil Karupparaj
,
R.
, and
Chiranjeevi
,
C.
,
2013
, “
Heat Transfer Enhancement With Al2O3 Nanofluids and Twisted Tapes in a Pipe for Solar Thermal Applications
,”
Procedia Eng.
,
64
, pp.
1474
1484
. 10.1016/j.proeng.2013.09.229
4.
Krajnik
,
P.
,
Pusavec
,
F.
, and
Rashid
,
A.
,
2011
, “Advances in Sustainable Manufacturing Technologies,”
Nanofluids: Properties, Applications and Sustainability Aspects in Materials Processing Technologies
,
Springer
,
Berlin Heidelberg
.
5.
Salata
,
O.
,
2004
, “
Applications of Nanoparticles in Biology and Medicine
,”
J. Nanobiotechnol.
,
2
(
1
), pp.
1
6
.
6.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2009
, “
Heat Transfer Enhancement and Pressure Drop Characteristics of TiO2–Water Nanofluid in a Double-Tube Counter Flow Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2059
2067
. 10.1016/j.ijheatmasstransfer.2008.10.023
7.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1646
1668
. 10.1016/j.rser.2010.11.035
8.
Nigam
,
B.
,
Mittal
,
S.
,
Prakash
,
A.
,
Satsangi
,
S.
,
Mahto
,
P. K.
, and
Swain
,
B. P.
,
2018
, “
Synthesis and Characterization of Fe3O4 Nanoparticles for Nanofluid Applications-A Review
,”
IOP Conference Series: Materials Science and Engineering
,
Sikkim, India
,
Dec. 8–10, 2017
, Vol.
377
, No.
1
,
IOP Publishing
.
9.
Tayebi
,
T.
, and
Chamkha
,
A. J.
,
2017
, “
Buoyancy-Driven Heat Transfer Enhancement in a Sinusoidally Heated Enclosure Utilizing Hybrid Nanofluid
,”
Comput. Therm. Sci.: Int. J.
,
9
(
5
), pp.
405
421
. 10.1615/computthermalscien.2017019908
10.
Tayebi
,
T.
, and
Chamkha
,
A. J.
,
2017
, “
Natural Convection Enhancement in an Eccentric Horizontal Cylindrical Annulus Using Hybrid Nanofluids
,”
Numer. Heat Transfer, Part A
,
71
(
11
), pp.
1159
1173
. 10.1080/10407782.2017.1337990
11.
Tayebi
,
T.
, and
Chamkha
,
A. J.
,
2016
, “
Free Convection Enhancement in an Annulus Between Horizontal Confocal Elliptical Cylinders Using Hybrid Nanofluids
,”
Numer. Heat Transfer, Part A
,
70
(
10
), pp.
1141
1156
. 10.1080/10407782.2016.1230423
12.
Balla
,
H. H.
,
Abdullah
,
S.
,
Faizal
,
W. M.
,
Zulkifli
,
R.
, and
Sopian
,
K.
,
2013
, “
Numerical Study of the Enhancement of Heat Transfer for Hybrid CuO–Cu Nanofluids Flowing in a Circular Pipe
,”
J. Oleo Sci.
,
62
(
7
), pp.
533
539
. 10.5650/jos.62.533
13.
Labib
,
M. N.
,
Nine
,
M. J.
,
Afrianto
,
H.
,
Chung
,
H.
, and
Jeong
,
H.
,
2013
, “
Numerical Investigation on Effect of Base Fluids and Hybrid Nanofluid in Forced Convective Heat Transfer
,”
Int. J. Therm. Sci.
,
71
, pp.
163
171
. 10.1016/j.ijthermalsci.2013.04.003
14.
Takabi
,
B.
,
Gheitaghy
,
A. M.
, and
Tazraei
,
P.
,
2016
, “
Hybrid Water-Based Suspension of Al2O3 and Cu Nanoparticles on Laminar Convection Effectiveness
,”
J. Thermophys. Heat Transfer
,
30
(
3
), pp.
523
532
. 10.2514/1.T4756
15.
Rahman
,
M. R. A.
,
Leong
,
K. Y.
,
Idris
,
A. C.
,
Saad
,
M. R.
, and
Anwar
,
M.
,
2016
, “
Numerical Analysis of the Forced Convective Heat Transfer on Al2O3–Cu/Water Hybrid Nanofluid
,”
Heat Mass Transfer
,
53
(
5
), pp.
1835
1842
. 10.1007/s00231-016-1941-z
16.
Benkhedda
,
M.
,
Boufendi
,
T.
, and
Touahri
,
S.
,
2018
, “
Laminar Mixed Convective Heat Transfer Enhancement by Using Ag-TiO2-Water Hybrid Nanofluid in a Heated Horizontal Annulus
,”
Heat Mass Transfer
,
59
(
9
), pp.
2799
2814
. 10.1007/s00231-018-2302-x
17.
Alsabery
,
A. I.
,
Ismael
,
M. A.
,
Chamkha
,
A. J.
, and
Hashim
,
I.
,
2018
, “
Mixed Convection of Al2O3-Water Nanofluid in a Double Lid-Driven Square Cavity With a Solid Inner Insert Using Buongiorno’s Two-Phase Model
,”
Int. J. Heat Mass Transfer
,
119
, pp.
939
961
. 10.1016/j.ijheatmasstransfer.2017.11.136
18.
Zhao
,
F. Y.
,
Liu
,
D.
, and
Tang
,
G. F.
,
2007
, “
Conjugate Heat Transfer in Square Enclosures
,”
Heat Mass Transfer
,
43
(
9
), pp.
907
922
. 10.1007/s00231-006-0136-4
19.
Mahapatra
,
P. S.
,
De
,
S.
,
Ghosh
,
K.
,
Manna
,
N. K.
, and
Mukhopadhyay
,
A.
,
2013
, “
Heat Transfer Enhancement and Entropy Generation in a Square Enclosure in the Presence of Adiabatic and Isothermal Blocks
,”
Numer. Heat Transfer, Part A
,
64
(
7
), pp.
577
596
. 10.1080/10407782.2013.784679
20.
Sivaraj
,
C.
, and
Sheremet
,
M.
,
2017
, “
MHD Natural Convection in an Inclined Square Porous Cavity With a Heat Conducting Solid Block
,”
J. Magn. Magn. Mater.
,
426
, pp.
351
360
. 10.1016/j.jmmm.2016.11.112
21.
Alsabery
,
A. I.
,
Tayebi
,
T.
,
Chamkha
,
A. J.
, and
Hashim
,
I.
,
2018
, “
Effect of Rotating Solid Cylinder on Entropy Generation and Convective Heat Transfer in a Wavy Porous Cavity Heated From Below
,”
Int. Commun. Heat Mass Transfer
,
95
, pp.
197
209
. 10.1016/j.icheatmasstransfer.2018.05.003
22.
Oztop
,
H. F.
,
Zhao
,
Z.
, and
Yu
,
B.
,
2009
, “
Fluid Flow Due to Combined Convection in Lid-Driven Enclosure Having a Circular Body
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
886
901
. 10.1016/j.ijheatfluidflow.2009.04.009
23.
Alsabery
,
A.
,
Tayebi
,
T.
,
Chamkha
,
A.
, and
Hashim
,
I.
,
2018
, “
Effects of Non-Homogeneous Nanofluid Model on Natural Convection in a Square Cavity in the Presence of Conducting Solid Block and Corner Heater
,”
Energies
,
11
(
10
), p.
2507
. 10.3390/en11102507
24.
Alsabery
,
A. I.
,
Tayebi
,
T.
,
Chamkha
,
A. J.
, and
Hashim
,
I.
,
2018
, “
Effects of Two-Phase Nanofluid Model on Natural Convection in a Square Cavity in the Presence of an Adiabatic Inner Block and Magnetic Field
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
7
), pp.
1613
1647
. 10.1108/HFF-10-2017-0425
25.
Garoosi
,
F.
, and
Rashidi
,
M. M.
,
2017
, “
Two Phase Flow Simulation of Conjugate Natural Convection of the Nanofluid in a Partitioned Heat Exchanger Containing Several Conducting Obstacles
,”
Int. J. Mech. Sci.
,
130
, pp.
282
306
. 10.1016/j.ijmecsci.2017.06.020
26.
Tayebi
,
T.
, and
Chamkha
,
A. J.
,
2019
, “
Entropy Generation Analysis Due to MHD Natural Convection Flow in a Cavity Occupied With Hybrid Nanofluid and Equipped With a Conducting Hollow Cylinder
,”
J. Therm. Anal. Calorim.
, pp.
1
15
. 10.1007/s10973-019-08651-5
27.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
(
1
), pp.
789
793
. 10.1016/j.enconman.2010.06.072
28.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
,
Clarendon Press
,
Oxford
.
29.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
30.
House
,
J. M.
,
Beckermann
,
C.
, and
Smith
,
T. F.
,
1990
, “
Effect of a Centered Conducting Body on Natural Convection Heat Transfer in an Enclosure
,”
Numer. Heat Transfer
,
18
(
2
), pp.
213
225
. 10.1080/10407789008944791
You do not currently have access to this content.