Abstract

Phase change materials (PCMs) generally suffer from low thermal conductivity which limits their application in thermal systems. The effective thermal conductivity may be improved by including fins, metallic powders, fine wires, and nanoparticles. The objective of this study is to investigate the thermal performance of graphene nanoplatelets (GNPs) dispersed in small quantities in 1-tetradecanol (C14H30O) PCM. This nano-enhanced PCM (NPCM) is placed in the annular space of a shell and tube in a solar thermal storage unit. The numerical simulations have been carried out using a numerical model based on the enthalpy-porosity and the control volume methods. The numerical model has been successfully validated by comparison with experimental data available in the literature. The numerical results showed that the higher the GNPs concentration, the lower the stored energy. The higher the GNPs concentration the shorter the discharging time. But, during the charging process, though the reduction in the melting time by 9.5% for GNPs concentration increase from 0 to 1 wt%, the melting time increased in contrast by 10.5% for GNPs content increasing from 1 to 3 wt%. For the GNPs concentration of 3 wt%, the heat transfer rate enhancement was limited by an undesirable increase in viscosity which led to weak natural convection and hence a longer charging time. Thus, the GNPs concentration of 1 wt% showed better thermal performance than that of 3 wt% concentration. These results may guide the improvement of solar thermal storage by dispersing GNPs in PCM.

References

1.
Lacroix
,
M.
,
1993
, “
Study of the Heat Transfer Behavior of a Latent Heat Thermal Energy Storage Unit With a Finned Tube
,”
Int. J. Heat Mass Transfer
,
36
(
8
), pp.
2083
2092
.
2.
Velraj
,
R.
,
Seeniraj
,
R. V.
,
Hafner
,
B.
,
Faber
,
C.
, and
Schwarzer
,
K.
,
1997
, “
Experimental Analysis and Numerical Modeling of Inward Solidification on a Finned Vertical Tube for a Latent Heat Storage Unit
,”
Sol. Energ.
,
60
(
5
), pp.
281
290
.
3.
Castell
,
A.
,
Solé
,
C.
,
Medrano
,
M.
,
Roca
,
J.
,
Cabeza
,
L. F.
, and
García
,
D.
,
2008
, “
Natural Convection Heat Transfer Coefficients in Phase Change Material (PCM) Modules With External Vertical Fins
,”
Appl. Therm. Eng.
,
28
(
13
), pp.
1676
1686
.
4.
Farid
,
M. M.
, and
Kanzawa
,
A.
,
1989
, “
Thermal Performance of a Heat Storage Module Using PCM’s With Different Melting Temperatures: Mathematical Modeling
,”
ASME J. Sol. Energy Eng.
,
111
(
2
), pp.
152
157
.
5.
Michels
,
H.
, and
Pitz-Paal
,
R.
,
2007
, “
Cascaded Latent Heat Storage for Parabolic Trough Solar Power Plants
,”
Sol. Energ.
,
81
(
6
), pp.
829
837
.
6.
Fiedler
,
T.
,
Ochsner
,
A.
,
Belova
,
I. V.
, and
Murch
,
G. E.
,
2008
, “
Thermal Conductivity Enhancement of Composite Heat Sinks Using Cellular Materials
,”
Defect Diffus. Forum
,
273–276
, pp.
222
226
.
7.
Mesalhy
,
O.
,
Lafdi
,
K.
,
Elgafy
,
A.
, and
Bowman
,
K.
,
2005
, “
Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage Using High Thermal Conductivity Porous Matrix
,”
Energ. Convers. Manage.
,
46
(
6
), pp.
847
867
.
8.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2005
, “
A Two-Temperature Model for Solid-Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
995
1004
.
9.
Ahmed
,
S. F.
,
Khalid
,
M.
,
Rashmi
,
W.
,
Chan
,
A.
, and
Shahbaz
,
K.
,
2017
, “
Recent Progress in Solar Thermal Energy Storage Using Nanomaterials
,”
Renew. Sust. Energ. Rev.
,
67
, pp.
450
460
.
10.
Kaviarasu
,
C.
, and
Prakash
,
D.
,
2016
, “
Review on Phase Change Materials With Nanoparticle in Engineering Applications
,”
J. Eng. Sci. Technol. Rev.
,
9
(
4
), pp.
26
386
.
11.
Kibria
,
M. A.
,
Anisur
,
M. R.
,
Mahfuz
,
M. H.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2015
, “
A Review on Thermophysical Properties of Nanoparticle Dispersed Phase Change Materials
,”
Energ. Convers. Manage.
,
95
, pp.
69
89
.
12.
Qiu
,
L.
,
Ouyang
,
Y.
,
Feng
,
Y.
, and
Zhang
,
X.
,
2019
, “
Review on Micro/Nano Phase Change Materials for Solar Thermal Applications
,”
Renew. Energ.
,
140
, pp.
513
538
.
13.
Allahbakhsh
,
A.
, and
Arjmand
,
M.
,
2019
, “
Graphene-Based Phase Change Composites for Energy Harvesting and Storage: State of the Art and Future Prospects
,”
Carbon
,
148
, pp.
441
480
.
14.
Zou
,
D.
,
Liu
,
X.
,
He
,
R.
, and
Huang
,
L.
,
2019
, “
High Thermal Response Rate and Super Low Supercooling Degree Microencapsulated Phase Change Materials (MEPCM) Developed by Optimizing Shell With Various Nanoparticles
,”
Int. J. Heat Mass Transfer
,
140
, pp.
956
964
.
15.
Hosseinzadeh
,
A. K.
,
Alizadeh
,
M.
,
Tavakoli
,
M. H.
, and
Ganji
,
D. D.
,
2019
, “
Investigation of Phase Change Material Solidification Process in a LHTESS in the Presence of Fins With Variable Thickness and Hybrid Nanoparticles
,”
Appl. Therm. Eng.
,
152
, pp.
706
717
.
16.
Chavan
,
S.
,
Gumtapure
,
V.
, and
Perumal
,
A. D.
,
2020
, “
Numerical and Experimental Analysis on Thermal Energy Storage of Polyethylene/Functionalized Graphene Composite Phase Change Materials
,”
J. Energy Storage
,
27
, p.
101045
.
17.
Iachachene
,
F.
,
Haddad
,
Z.
,
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2019
, “
Melting of Phase Change Materials in a Trapezoidal Cavity: Orientation and Nanoparticles Effects
,”
J. Mol. Liq.
,
292
, pp.
110592
.
18.
Akhmetov
,
B.
,
Navarro
,
M. E.
,
Seitov
,
A.
,
Kaltayev
,
A.
,
Bakenov
,
Z.
, and
Ding
,
Y.
,
2019
, “
Numerical Study of Integrated Latent Heat Thermal Energy Storage Devices Using Nanoparticle-Enhanced Phase Change Materials
,”
Sol. Energy
,
194
, pp.
724
741
.
19.
Saranprabhu
,
M. K.
, and
Rajan
,
K. S.
,
2019
, “
Magnesium Oxide Nanoparticles Dispersed Solar Salt With Improved Solid Phase Thermal Conductivity and Specific Heat for Latent Heat Thermal Energy Storage
,”
Renew. Energ.
,
141
, pp.
451
459
.
20.
Arici
,
M.
,
Tütüncü
,
E.
, and
Campo
,
A.
,
2018
, “
Numerical Investigation of Melting of Paraffin Wax Dispersed With CuO Nanoparticles Inside a Square Enclosure
,”
Heat Transfer Res.
,
49
(
9
), pp.
9847
9863
.
21.
Sanusi
,
O.
,
Warzoha
,
R.
, and
Fleischer
,
A. S.
,
2011
, “
Energy Storage and Solidification of Paraffin Phase Change Material Embedded With Graphite Nanofibers
,”
Int. J. Heat Mass Transfer
,
54
(
19
), pp.
4429
4436
.
22.
Nabavitabatabayi
,
M.
,
Haghighat
,
F.
,
Moreau
,
A.
, and
Sra
,
P.
,
2014
, “
Numerical Analysis of a Thermally Enhanced Domestic Hot Water Tank
,”
App. Energ.
,
129
(
15
), pp.
253
260
.
23.
Sciacovelli
,
A.
,
Colella
,
F.
, and
Verda
,
V.
,
2013
, “
Melting of PCM in a Thermal Energy Storage Unit: Numerical Investigation and Effect of Nanoparticle Enhancement
,”
Int. J. Energy Res.
,
37
(
13
), pp.
1610
1623
.
24.
Mahdi
,
J. M.
, and
Nsofor
,
E. C.
,
2017
, “
Melting Enhancement in Triplex-Tube Latent Heat Energy Storage System Using Nanoparticles-Metal Foam Combination
,”
App. Energ.
,
191
, pp.
22
34
.
25.
Farsani
,
R. Y.
,
Raisi
,
A.
,
Nadooshan
,
A. A.
, and
Vanapalli
,
S.
,
2017
, “
Does Nanoparticles Dispersed in a Phase Change Material Improve Melting Characteristics?
Int. Commun. Heat Mass Transfer
,
89
, pp.
219
229
.
26.
Mallow
,
A.
,
Abdelaziz
,
O.
, and
Graham
,
S. J.
,
2016
, “
Thermal Charging Study of Compressed Expanded Natural Graphite/Phase Change Material Composites
,”
Carbon
,
109
, pp.
495
504
.
27.
Zabalegui
,
A.
,
Lokapur
,
D.
, and
Lee
,
H.
,
2014
, “
Latent Heat Reduction Mechanisms and a Numerical Study of Effective Thermal Storage Performance
,”
Int. J. Heat Mass Transfer
,
78
, pp.
1145
1154
.
28.
Mettawee
,
E.-B. S.
, and
Assassa
,
G. M. R.
,
2007
, “
Thermal Conductivity Enhancement in a Latent Heat Storage System
,”
Sol. Energ.
,
81
(
7
), pp.
839
845
.
29.
Khodadadi
,
J. M.
, and
Hosseinizadeh
,
S. F.
,
2007
, “
Nanoparticle-Enhanced Phase Change Materials (NEPCM) With Great Potential for Improved Thermal Energy Storage
,”
Int. Commun. Heat Mass Transfer
,
34
(
5
), pp.
534
543
.
30.
Zeng
,
J. L.
,
Sun
,
L. X.
,
Xu
,
F.
,
Tan
,
Z. C.
,
Zhang
,
Z. H.
, and
Zhang
,
J.
,
2007
, “
Study of a PCM Based Energy Storage System Containing Ag Nanoparticles
,”
J. Therm. Anal. Calorim.
,
87
(
2
), pp.
369
373
.
31.
Seeniraj
,
R. V.
,
Velraj
,
R.
, and
Lakshmi Narasimhan
,
N.
,
2002
, “
Heat Transfer Enhancement Study of a LHTS Unit Containing Dispersed High Conductivity Particles
,”
ASME J. Sol. Energy Eng.
,
124
(
3
), pp.
243
249
.
32.
Adine
,
H. A.
, and
El Qarnia
,
H.
,
2009
, “
Numerical Analysis of the Thermal Behaviour of a Shell-and-Tube Heat Storage Unit Using Phase Change Materials
,”
App. Math. Modell.
,
33
(
4
), pp.
2132
2144
.
33.
Zhu
,
Z.-Q.
,
Liu
,
M.-J.
,
Hu
,
N.
,
Huang
,
Y.-K.
,
Fan
,
L.-W.
,
Yu
,
Z.-T.
, and
Ge
,
J.
,
2018
, “
Inward Solidification Heat Transfer of Nano-Enhanced Phase Change Materials in a Spherical Capsule: An Experimental Study
,”
ASME J. Heat Transfer
,
140
(
2
), p.
022301
.
34.
Hu
,
N.
,
Zhu
,
Z.-Q.
,
Li
,
Z-R.
,
Tu
,
J.
, and
Fan
,
L.-W.
,
2019
, “
Unconstrained Melting Heat Transfer of Nano-Enhanced Phase-Change Materials in a Spherical Capsule for Latent Heat Storage: Effects of the Capsule Size
,”
ASME J. Heat Transfer
,
141
(
7
), p.
072301
.
35.
ANSYS, 2013
,
ANSYS FLUENT Theory Guide Release 15.0
,
ANSYS Inc.
36.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modeling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.
37.
Lacroix
,
M.
,
1993
, “
Numerical Simulation of a Shell-and-Tube Latent Heat Thermal Energy Storage Unit
,”
Sol. Energ.
,
50
(
4
), pp.
357
367
.
38.
Kibria
,
M. A.
,
Anisur
,
M. R.
,
Mahfuz
,
M. H.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2014
, “
Numerical and Experimental Investigation of Heat Transfer in a Shell and Tube Thermal Energy Storage System
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
71
78
.
39.
Hu
,
N.
,
Zhu
,
Z.
,
Li
,
Z.
,
Tu
,
J.
, and
Fan
,
L.
,
2018
, “
Close-Contact Melting Heat Transfer on a Heated Horizontal Plate: Revisited in the Presence of Nano-Enhanced Phase Change Materials (NePCM)
,”
Int. J. Heat Mass Transfer
,
124
, pp.
794
799
.
You do not currently have access to this content.