Abstract

In ground air heat exchanger (GAHE) system, the heat transfer between air and underground soil largely depends on soil thermal properties and therefore, any improvement in soil thermal properties will shorten the pipe length required and the land area needed for its installation. The objective of the present study is to investigate the effect of different backfilling materials (low cost and locally available) on the thermal performance of GAHE system using a small-scale laboratory experimental setup. Seven different backfilling materials have been considered for the study and it was observed that after 6 h of continuous operation, the drop in air temperature was 6.2 °C at outlet section of pipe (2.4 m away from inlet) for the native soil. However, for sand–bentonite with graphite as a backfilling material (BFM), the drop in air temperature of 6.2 °C was obtained at a pipe length of 1.15 m only. Therefore, the use of sand–bentonite with graphite as a BFM reduces the pipe length of GAHE system by more than 50%. The study establishes the fact that the length of pipe and land area requirement for GAHE system can be substantially reduced by using thermally enhanced backfilling materials at the close vicinity of GAHE pipes.

References

References
1.
Omer
,
A. M.
,
2008
, “
Energy, Environment and Sustainable Development
,”
Renew. Sustain. Energy Rev.
,
12
(
9
), pp.
2265
2300
. 10.1016/j.rser.2007.05.001
2.
Nejat
,
P.
,
Jomehzadeh
,
F.
,
Taheri
,
M. M.
,
Gohari
,
M.
, and
Abd Majid
,
M. Z.
,
2015
, “
A Global Review of Energy Consumption, CO2 Emissions and Policy in the Residential Sector (With an Overview of the Top Ten CO2 Emitting Countries)
,”
Renew. Sustain. Energy Rev.
,
43
(
1
), pp.
843
862
. 10.1016/j.rser.2014.11.066
3.
van der Hoeven
,
Maria
,
2013
,
Transition to Sustainable Buildings Strategies and Opportunities to 2050
,
International Energy Agency
,
Paris
.
4.
Amasyali
,
K.
, and
El-Gohary
,
N. M.
,
2018
, “
A Review of Data-Driven Building Energy Consumption Prediction Studies
,”
Renew. Sustain. Energy Rev.
,
81
(
1
), pp.
1192
1205
. 10.1016/j.rser.2017.04.095
5.
Zhang
,
M.
,
Qin
,
M.
,
Rode
,
C.
, and
Chen
,
Z.
,
2017
, “
Moisture Buffering Phenomenon and Its Impact on Building Energy Consumption
,”
Appl. Therm. Eng.
,
124
(
1
), pp.
337
345
. 10.1016/j.applthermaleng.2017.05.173
6.
Birol
,
F.
,
2018
,
The Future of Cooling: Opportunities for Energy Efficient Air Conditioning
,
International Energy Agency
,
Paris
.
7.
Karytsas
,
S.
, and
Theodoropoulou
,
H.
,
2014
, “
Public Awareness and Willingness to Adopt Ground Source Heat Pumps for Domestic Heating and Cooling
,”
Renew. Sustain. Energy Rev.
,
34
(
1
), pp.
49
57
. 10.1016/j.rser.2014.02.008
8.
BaNos
,
R.
,
Manzano-agugliaro
,
F.
,
Montoya
,
F. G.
,
Gil
,
C.
,
Alcayde
,
A.
, and
Gómez
,
J.
,
2011
, “
Optimization Methods Applied to Renewable and Sustainable Energy: A Review
,”
Renew. Sustain. Energy Rev.
,
15
(
4
), pp.
1753
1766
. 10.1016/j.rser.2010.12.008
9.
Attar
,
I.
,
Naili
,
N.
,
Khalifa
,
N.
,
Hazami
,
M.
, and
Farhat
,
A.
,
2013
, “
Parametric and Numerical Study of a Solar System for Heating a Greenhouse Equipped With a Buried Exchanger
,”
Energy Convers. Manag.
,
70
(
1
), pp.
163
173
. 10.1016/j.enconman.2013.02.017
10.
Omer
,
A. M.
,
2008
, “
Ground-Source Heat Pumps Systems and Applications
,”
Renew. Sustain. Energy Rev.
,
12
(
2
), pp.
344
371
. 10.1016/j.rser.2006.10.003
11.
Mihalakakou
,
G.
,
Santamouris
,
M.
, and
Asimakopoulos
,
D.
,
1994
, “
Modeling the Thermal Performance of Earth-to-Air Heat Exchangers
,”
Sol. Energy
,
53
(
3
), pp.
301
305
. 10.1016/0038-092X(94)90636-X
12.
Sawhney
,
R. L.
,
Buddhi
,
D.
, and
Thanu
,
N. M.
,
1999
, “
An Experimental Study of Summer Performance of a Recirculation Type Underground Airpipe Air Conditioning System
,”
Build. Environ.
,
34
(
2
), pp.
189
196
. 10.1016/S0360-1323(98)00009-2
13.
Vaz
,
J.
,
Sattler
,
M. A.
,
dos Santos
,
E. D.
, and
Isoldi
,
L. A.
,
2011
, “
Experimental and Numerical Analysis of an Earth—Air Heat Exchanger
,”
Energy Build.
,
43
(
9
), pp.
2476
2482
. 10.1016/j.enbuild.2011.06.003
14.
Esen
,
H.
,
Inalli
,
M.
, and
Esen
,
M.
,
2007
, “
Numerical and Experimental Analysis of a Horizontal Ground-Coupled Heat Pump System
,”
Build. Environ.
,
42
(
3
), pp.
1126
1134
. 10.1016/j.buildenv.2005.11.027
15.
Naili
,
N.
,
Hazami
,
M.
,
Kooli
,
S.
, and
Farhat
,
A.
,
2015
, “
Energy and Exergy Analysis of Horizontal Ground Heat Exchanger for Hot Climatic Condition of Northern Tunisia
,”
Geothermics
,
53
(
1
), pp.
270
280
. 10.1016/j.geothermics.2014.07.004
16.
Chlela
,
F.
,
Husaunndee
,
A.
,
Riederer
,
P.
, and
Inard
,
C.
,
2007
, “
Numerical Evaluation of Earth to Air Heat Exchangers and Heat Recovery Ventilation Systems
,”
Int. J. Vent.
,
6
(
1
), pp.
31
42
. 10.1080/14733315.2007.11683762
17.
De Paepe
,
M.
, and
Janssens
,
A.
,
2003
, “
Thermo-Hydraulic Design of Earth-Air Heat Exchangers
,”
Energy Build.
,
35
(
4
), pp.
389
397
. 10.1016/S0378-7788(02)00113-5
18.
Yang
,
D.
,
Wei
,
H.
,
Shi
,
R.
, and
Wang
,
J.
,
2019
, “
A Demand-Oriented Approach for Integrating Earth-to-Air Heat Exchangers Into Buildings for Achieving Year-Round Indoor Thermal Comfort
,”
Energy Convers. Manag.
,
182
(
1
), pp.
95
107
. 10.1016/j.enconman.2018.12.071
19.
Sodha
,
M. S.
,
Sharma
,
A. K.
,
Singh
,
S. P.
,
Bansal
,
N. K.
, and
Kumar
,
A.
,
1985
, “
Evaluation of an Earth-Air Tunnel System for Cooling/Heating of a Hospital Complex
,”
Build. Environ.
,
20
(
2
), pp.
115
122
. 10.1016/0360-1323(85)90005-8
20.
Goswami
,
D. Y.
, and
Dhaliwal
,
A. S.
,
1985
, “
Heat Transfer Analysis in Environmental Control Using an Underground Air Tunnel
,”
ASME J. Sol. Energy Eng.
,
107
(
2
), pp.
141
145
. 10.1115/1.3267667
21.
Santamouris
,
M.
,
Mihalalalou
,
G.
,
Balaras
,
C. A.
,
Lewis
,
J. O.
,
Vallindras
,
M.
, and
Argiriou
,
A.
,
1996
, “
Energy Conservation in Greenhouses With Buried Pipes
,”
Energy
,
21
(
5
), pp.
353
360
. 10.1016/0360-5442(95)00121-2
22.
Mihalakakou
,
G.
,
Lewis
,
J. O.
, and
Santamouris
,
M.
,
1996
, “
On the Heating Potential of Buried Pipes Techniques—Application in Ireland
,”
Energy Build.
,
24
(
22
), pp.
19
25
. 10.1016/0378-7788(95)00957-4
23.
Liu
,
Z.
,
Yu
,
Z. J.
,
Yang
,
T.
,
Li
,
S.
,
El Mankibi
,
M.
,
Roccamena
,
L.
,
Qin
,
D.
, and
Zhang
,
G.
,
2019
, “
Experimental Investigation of a Vertical Earth-to-Air Heat Exchanger System
,”
Energy Convers. Manag.
,
183
(
1
), pp.
241
251
. 10.1016/j.enconman.2018.12.100
24.
Agrawal
,
K. K.
,
Agrawal
,
G. D.
,
Misra
,
R.
,
Bhardwaj
,
M.
, and
Jamuwa
,
D. K.
,
2018
, “
A Review on Effect of Geometrical, Flow and Soil Properties on the Performance of Earth Air Tunnel Heat Exchanger
,”
Energy Build.
,
176
(
1
), pp.
120
138
. 10.1016/j.enbuild.2018.07.035
25.
Bansal
,
V.
,
Misra
,
R.
,
Agrawal
,
G. D.
, and
Mathur
,
J.
,
2013
, “
‘Derating Factor’ New Concept for Evaluating Thermal Performance of Earth Air Tunnel Heat Exchanger: A Transient CFD Analysis
,”
Appl. Energy
,
102
(
1
), pp.
418
426
. 10.1016/j.apenergy.2012.07.027
26.
Bansal
,
V.
,
Misra
,
R.
,
Agrawal
,
G. D.
, and
Mathur
,
J.
,
2013
, “
Transient Effect of Soil Thermal Conductivity and Duration of Operation on Performance of Earth Air Tunnel Heat Exchanger
,”
Appl. Energy
,
103
(
1
), pp.
1
11
. 10.1016/j.apenergy.2012.10.014
27.
Misra
,
R.
,
Bansal
,
V.
,
Agrawal
,
G. D.
,
Mathur
,
J.
, and
Aseri
,
T.
,
2013
, “
Transient Analysis Based Determination of Derating Factor for Earth Air Tunnel Heat Exchanger in Winter
,”
Energy Build.
,
58
(
1
), pp.
76
85
. 10.1016/j.enbuild.2012.12.002
28.
Agrawal
,
K. K.
,
Misra
,
R.
,
Yadav
,
T.
,
Agrawal
,
G. D.
, and
Jamuwa
,
D. K.
,
2018
, “
Experimental Study to Investigate the Effect of Water Impregnation on Thermal Performance of Earth Air Tunnel Heat Exchanger for Summer Cooling in Hot and Arid Climate
,”
Renew. Energy
,
120
(
1
), pp.
255
265
. 10.1016/j.renene.2017.12.070
29.
Agrawal
,
K. K.
,
Yadav
,
T.
,
Misra
,
R.
, and
Agrawal
,
G. D.
,
2019
, “
Effect of Soil Moisture Contents on Thermal Performance of Earth-Air-Pipe Heat Exchanger for Winter Heating in Arid Climate: In Situ Measurement
,”
Geothermics
,
77
(
1
), pp.
12
23
. 10.1016/j.geothermics.2018.08.004
30.
Misra
,
R.
,
Jakhar
,
S.
,
Agrawal
,
K. K.
,
Sharma
,
S.
,
Jamuwa
,
D. K.
,
Soni
,
M. S.
, and
Agrawal
,
G. D.
,
2018
,
Field Investigations to Determine the Thermal Performance of Earth Air Tunnel Heat Exchanger With Dry and Wet Soil: Energy and Exergetic Analysis
,
Elsevier B.V.
,
Amsterdam
.
31.
Cuny
,
M.
,
Lin
,
J.
,
Siroux
,
M.
, and
Fond
,
C.
,
2019
, “
Influence of Rainfall Events on the Energy Performance of an Earth-Air Heat Exchanger Embedded in a Multilayered Soil
,”
Renew. Energy.
10.1016/j.renene.2019.01.071
32.
Wang
,
H.
,
Cui
,
Y.
, and
Qi
,
C.
,
2013
, “
Effects of Sand-Bentonite Backfill Materials on the Thermal Performance of Borehole Heat Exchangers
,”
Heat Transf. Eng.
,
34
(
1
), pp.
37
44
. 10.1080/01457632.2013.694771
33.
Omer
,
A. M.
,
2016
, “
Experimental Investigation of the Performance of a Ground Source Heat Pump System for Buildings Heating and Cooling
,”
Int. J. Innov. Math. Stat. Energy Policies
,
4
(
1
), pp.
10
44
.
34.
Cuny
,
M.
,
Lin
,
J.
,
Siroux
,
M.
,
Magnenet
,
V.
, and
Fond
,
C.
,
2018
, “
Influence of Coating Soil Types on the Energy of Earth-Air Heat Exchanger
,”
Energy Build.
,
158
(
1
), pp.
1000
1012
. 10.1016/j.enbuild.2017.10.048
35.
Lee
,
C.
,
Lee
,
K.
,
Choi
,
H.
, and
Choi
,
H.-P.
,
2010
, “
Characteristics of Thermally-Enhanced Bentonite Grouts for Geothermal Heat Exchanger in South Korea
,”
Sci. China Technol. Sci.
,
53
(
1
), pp.
123
128
. 10.1007/s11431-009-0413-9
36.
Delaleux
,
F.
,
Py
,
X.
,
Olives
,
R.
, and
Dominguez
,
A.
,
2012
, “
Enhancement of Geothermal Borehole Heat Exchangers Performances by Improvement of Bentonite Grouts Conductivity
,”
Appl. Therm. Eng.
,
33–34
(
1
), pp.
92
99
. 10.1016/j.applthermaleng.2011.09.017
37.
Di Sipio
,
E.
, and
Bertermann
,
D.
,
2017
, “
Influence of Different Moisture and Load Conditions on Heat Transfer Within Soils in Very Shallow Geothermal Application: An Overview of ITER Project
,”
Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering Stanford University
,
Stanford, CA
,
Feb. 13–15
, No. SGP-TR-212.
38.
Al-Ameen
,
Y.
,
Ianakiev
,
A.
, and
Evans
,
R.
,
2017
, “
Thermal Performance of a Solar Assisted Horizontal Ground Heat Exchanger
,”
Energy
,
140
(
1
), pp.
1216
1227
. 10.1016/j.energy.2017.08.091
39.
Al-Ameen
,
Y.
,
Ianakiev
,
A.
, and
Evans
,
R.
,
2018
, “
Recycling Construction and Industrial Landfill Waste Material for Backfill in Horizontal Ground Heat Exchanger Systems
,”
Energy
,
151
(
1
), pp.
556
568
. 10.1016/j.energy.2018.03.095
40.
Bordoloi
,
N.
,
Sharma
,
A.
,
Nautiyal
,
H.
, and
Goel
,
V.
,
2018
, “
An Intense Review on the Latest Advancements of Earth Air Heat Exchangers
,”
Renew. Sustain. Energy Rev.
,
89
(
1
), pp.
261
280
. 10.1016/j.rser.2018.03.056
41.
Elminshawy
,
N. A. S.
,
Siddiqui
,
F. R.
,
Farooq
,
Q. U.
, and
Addas
,
M. F.
,
2017
, “
Experimental Investigation on the Performance of Earth-Air Pipe Heat Exchanger for Different Soil Compaction Levels
,”
Appl. Therm. Eng.
,
124
(
1
), pp.
1319
1327
. 10.1016/j.applthermaleng.2017.06.119
42.
Yusof
,
T. M.
,
Ibrahim
,
H.
,
Azmi
,
W. H.
, and
Rejab
,
M. R. M.
,
2018
, “
Thermal Analysis of Earth-to-Air Heat Exchanger Using Laboratory Simulator
,”
Appl. Therm. Eng.
,
134
(
1
), pp.
130
140
. 10.1016/j.applthermaleng.2018.01.124
43.
Yoon
,
S.
,
Lee
,
S.-R.
, and
Go
,
G.-H.
,
2015
, “
Evaluation of Thermal Efficiency in Different Types of Horizontal Ground Heat Exchangers
,”
Energy Build.
,
105
(
1
), pp.
100
105
. 10.1016/j.enbuild.2015.07.054
44.
Kim
,
M. J.
,
Lee
,
S. R.
,
Yoon
,
S.
, and
Jeon
,
J. S.
,
2018
, “
An Applicable Design Method for Horizontal Spiral-Coil-Type Ground Heat Exchangers
,”
Geothermics
,
72
(
1
), pp.
338
347
. 10.1016/j.geothermics.2017.12.010
45.
Misra
,
A. K.
,
Gupta
,
M.
,
Lather
,
M.
, and
Garg
,
H.
,
2015
, “
Design and Performance Evaluation of Low Cost Earth to Air Heat Exchanger Model Suitable for Small Buildings in Arid and Semi Arid Regions
,”
KSCE J. Civ. Eng.
,
19
(
4
), pp.
853
856
. 10.1007/s12205-013-0597-1
46.
Li
,
W.
,
Li
,
X.
,
Peng
,
Y.
,
Wang
,
Y.
, and
Tu
,
J.
,
2018
, “
Experimental and Numerical Investigations on Heat Transfer in Stratified Subsurface Materials
,”
Appl. Therm. Eng.
,
138
, pp.
228
237
. 10.1016/j.applthermaleng.2018.02.037
47.
Zhao
,
Y.
,
Li
,
R.
,
Ji
,
C.
,
Huan
,
C.
,
Zhang
,
B.
, and
Liu
,
L.
,
2018
, “
Parametric Study and Design of an Earth-Air Heat Exchanger Using Model Experiment for Memorial Heating and Cooling
,”
Appl. Therm. Eng.
,
148
, pp.
838
845
. 10.1016/j.applthermaleng.2018.11.018
48.
Zhou
,
T.
,
Xiao
,
Y.
,
Liu
,
Y.
,
Lin
,
J.
, and
Huang
,
H.
,
2018
, “
Research on Cooling Performance of Phase Change Material-Filled Earth-Air Heat Exchanger
,”
Energy Convers. Manag.
,
177
(
1
), pp.
210
223
. 10.1016/j.enconman.2018.09.047
49.
Holman
,
J. P.
, and
Gajda
,
W. J.
,
1994
,
Experimental Methods for Engineers
, Vol.
2
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.