Abstract

An experimental investigation of condensation and evaporation heat transfer characteristics was performed in 15.88-mm-OD and 12.7-mm-OD smooth and three-dimensional enhanced tubes (1EHT, 3EHT) using R134A and R410A as the working fluid. The enhanced surface of the 1EHT tube is made up of dimples and a series of petal arrays; while the 3EHT tube is made up of rectangular cavities. Evaluations are performed at a saturation temperature of 45 °C, over the quality range of 0.8–0.2 for condensation; while for evaporation the saturation temperature was 6 °C and the quality ranged from 0.2 to 0.8. For condensation, the enhancement ratio (enhanced tube/smooth tube) of the heat transfer coefficients was 1.42–1.95 for the mass flux ranging from 80 to 200 kg/m2s; while for evaporation, the heat transfer enhancement ratio is 1.05–1.42 for values of mass flux that range from 50 to 180 kg/m2s. Furthermore, the 1EHT tube provides the best condensation and evaporation heat transfer performance, for both working fluids at the mass flux considered. This performance is due to the dimples in the enhanced surface that produce interface turbulence; additionally, the increased surface roughness causes additional disturbances and secondary flows near the boundary, producing higher heat fluxes. The main objective of this study was to evaluate the heat transfer enhancement of two enhanced tubes when using R134A and R410A as a function of mass flux, saturation temperature, and tube diameter. As a result of this study, it was determined that the heat transfer coefficient decreases with an increase in saturation temperature and tube diameter.

References

References
1.
Wu
,
Z.
,
Sunden
,
B.
,
Wang
,
L.
, and
Li
,
W.
,
2014
, “
Convective Condensation Inside Horizontal Smooth and Microfin Tubes
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051504
. 10.1115/1.4026370
2.
Li
,
W.
,
Tang
,
W.
,
Chen
,
J.
,
Zhu
,
H.
,
Kukulka
,
D. J.
,
He
,
Y.
,
Sun
,
Z.
,
Du
,
J.
, and
Zhang
,
B.
,
2018
, “
Convective Condensation in Three Enhanced Tubes With Different Surface Modifications
,”
Exp. Therm. Fluid Sci.
,
97
, pp.
79
88
. 10.1016/j.expthermflusci.2018.04.011
3.
Li
,
W.
,
Ma
,
X.
,
Sun
,
Z.-c.
,
He
,
Y.
,
Sherif
,
S. A.
,
Zhang
,
J.-h.
, and
Zhu
,
H.-t.
,
2019
, “
Evaporation Heat Transfer Characteristics of R410A Inside Horizontal Three-Dimensional Enhanced Tubes
,”
Int. J. Therm. Sci.
,
137
, pp.
456
466
. 10.1016/j.ijthermalsci.2018.12.003
4.
Chen
,
J.
, and
Li
,
W.
,
2018
, “
Local Flow Boiling Heat Transfer Characteristics in Three-Dimensional Enhanced Tubes
,”
Int. J. Heat Mass Transfer
,
121
, pp.
1021
1032
. 10.1016/j.ijheatmasstransfer.2018.01.065
5.
Sun
,
Z.-c.
,
Li
,
W.
,
Guo
,
R.-h.
,
He
,
Y.
, and
Kukulka
,
D. J.
,
2018
, “
Condensation Heat Transfer in Horizontal Three Dimension Two-Layer Two Side Enhanced Tubes
,”
Int. J. Heat Mass Transfer
,
127
, pp.
141
145
. 10.1016/j.ijheatmasstransfer.2018.08.021
6.
Kondou
,
C.
,
Mishima
,
F.
, and
Koyama
,
S.
,
2015
, “
Condensation and Evaporation of R32/R1234ze(E) and R744/R32/R1234ze(E) Flow in Horizontal Microfin Tubes
,”
Hvac & R Res.
,
21
(
5
), pp.
564
577
. 10.1080/23744731.2015.1023163
7.
Ewim
,
D. R. E.
,
Meyer
,
J. P.
, and
Noori Rahim Abadi
,
S. M. A.
,
2018
, “
Condensation Heat Transfer Coefficients in an Inclined Smooth Tube at Low Mass Fluxes
,”
Int. J. Heat Mass Transfer
,
123
, pp.
455
467
. 10.1016/j.ijheatmasstransfer.2018.02.091
8.
Singh
,
S.
, and
Kukreja
,
R.
,
2018
, “
Experimental Heat Transfer Coefficient and Pressure Drop During Condensation of R-134a and R-410A in Horizontal Micro-Fin Tubes
,”
Int. J. Air-Cond. Refrig.
,
26
(
3
), p.
1850022
. 10.1142/S2010132518500220
9.
Goto
,
M.
,
Inoue
,
N.
, and
Ishiwatari
,
N.
,
2001
, “
Condensation and Evaporation Heat Transfer of R410A Inside Internally Grooved Horizontal Tubes
,”
Int. J. Refrig.
,
24
(
7
), pp.
628
638
. 10.1016/S0140-7007(00)00087-6
10.
Kim
,
Y.
,
Seo
,
K.
, and
Jin
,
T. C.
,
2002
, “
Evaporation Heat Transfer Characteristics of R-410A in 7 and 9.52 mm Smooth/Micro-Fin Tubes
,”
Int. J. Refrig.
,
25
(
6
), pp.
716
730
. 10.1016/S0140-7007(01)00070-6
11.
Miyara
,
A.
,
Otsubo
,
Y.
, and
Ohtsuka
,
S.
,
2002
, “
Evaporation Heat Transfer of R410A in Herringbone Micro Fin Tubes, Thermophysical Properties and Transfer Processes of New Refrigerants
,”
CDROM
,
France
, pp.
314
319
.
12.
Kim
,
N. H.
,
2016
, “
Condensation Heat Transfer and Pressure Drop of R-410A in a 7.0 mm O.D. Microfin Tube at Low Mass Fluxes
,”
Heat Mass Transfer
,
52
(
12
), pp.
2833
2847
. 10.1007/s00231-016-1789-2
13.
Sarmadian
,
A.
,
Shafaee
,
M.
,
Mashouf
,
H.
, and
Mohseni
,
S.G.
,
2017
, “
Condensation Heat Transfer and Pressure Drop Characteristics of R-600a in Horizontal Smooth and Helically Dimpled Tubes
,”
Exp. Therm. Fluid Sci.
,
86
, pp.
54
62
. 10.1016/j.expthermflusci.2017.04.001
14.
Aroonrat
,
K.
, and
Wongwises
,
S.
,
2017
, “
Experimental Study on Two-Phase Condensation Heat Transfer and Pressure Drop of R-134a Flowing in a Dimpled Tube
,”
Int. J. Heat Mass Transfer
,
106
, pp.
437
448
. 10.1016/j.ijheatmasstransfer.2016.08.046
15.
Aroonrat
,
K.
, and
Wongwises
,
S.
,
2018
, “
Condensation Heat Transfer and Pressure Drop Characteristics of R-134a Flowing Through Dimpled Tubes With Different Helical and Dimpled Pitches
,”
Int. J. Heat Mass Transfer
,
121
, pp.
620
631
. 10.1016/j.ijheatmasstransfer.2018.01.001
16.
Aroonrat
,
K.
, and
Wongwises
,
S.
,
2019
, “
Experimental Investigation of Condensation Heat Transfer and Pressure Drop of R-134a Flowing Inside Dimpled Tubes With Different Dimpled Depths
,”
Int. J. Heat Mass Transfer
,
128
, pp.
783
793
. 10.1016/j.ijheatmasstransfer.2018.09.039
17.
Li
,
W.
,
Sun
,
Z.-c.
,
Guo
,
R.-h.
,
Ma
,
X.
,
Liu
,
Z.C.
,
Kukulka
,
D.J.
,
Ayub
,
Z.
,
Chen
,
W.
, and
He
,
Y.
,
2019
, “
Condensation Heat Transfer of R410A on Outside of Horizontal Smooth and Three-Dimensional Enhanced Tubes
,”
Int. J. Refrig.
,
98
, pp.
1
14
. 10.1016/j.ijrefrig.2018.09.035
18.
Dalkilic A
,
S.
,
Celen
,
A.
,
Cebi
,
A.
, and
Wongwises
,
S.
,
2016
, “
Empirical Correlations for the Determination of R134a’s Convective Heat Transfer Coefficient in Horizontal and Vertical Evaporators Having Smooth and Corrugated Tubes
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
85
97
. 10.1016/j.icheatmasstransfer.2016.05.007
19.
Lu
,
Q.
,
Chen
,
D.
,
Li
,
C.
, and
He
,
X.
,
2017
, “
Experimental Investigation on Flow Boiling Heat Transfer in Conventional and Mini Vertical Channels
,”
Int. J. Heat Mass Transfer
,
107
, pp.
225
243
. 10.1016/j.ijheatmasstransfer.2016.11.020
20.
Jingzhi
,
Z.
,
Naixiang
,
Z.
,
Wei
,
L.
, and
Yang
,
L.
,
2018
, “
An Experimental Study of R410A Condensation Heat Transfer and Pressure Drops Characteristics in Microfin and Smooth Tubes With 5 mm OD
,”
Int. J. Heat Mass Transfer
,
125
, pp.
1284
1295
. 10.1016/j.ijheatmasstransfer.2018.04.128
21.
Guo
,
S. P.
,
Wu
,
Z.
,
Li
,
W.
,
Kukulka
,
D.
,
Sundén
,
B.
,
Zhou
,
X.P.
,
Wei
,
J.J.
, and
Simon
,
T.
,
2015
, “
Condensation and Evaporation Heat Transfer Characteristics in Horizontal Smooth, Herringbone and Enhanced Surface EHT Tubes
,”
Int. J. Heat Mass Transfer
,
85
, pp.
281
291
. 10.1016/j.ijheatmasstransfer.2015.01.115
22.
Cavallini
,
A.
,
Del C
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
,
Zilio
,
C.
, and
Censi
,
G.
,
2006
, “
Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design
,”
Heat Transfer Eng.
,
27
(
8
), pp.
31
38
. 10.1080/01457630600793970
23.
Wojtan
,
L.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
,
2005
, “
Investigation of Flow Boiling in Horizontal Tubes: Part II—Development of a New Heat Transfer Model for Stratified-Wavy, Dryout and Mist Flow Regimes
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2970
2985
. 10.1016/j.ijheatmasstransfer.2004.12.013
24.
Li
,
W.
,
Chen
,
J. X.
,
Zhu
,
H.
,
Kukulka
,
D. J.
, and
Minkowycz
,
W. J.
,
2017
, “
Experimental Study on Condensation and Evaporation Flow Inside Horizontal Three Dimensional Enhanced Tubes
,”
Int. Commun. Heat Mass Transfer
,
80
, pp.
30
40
. 10.1016/j.icheatmasstransfer.2016.11.006
25.
Wang
,
X.
,
Ho
,
J. Y.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2018
, “
Condensation Heat Transfer and Pressure Drop Characteristics of R-134a in Horizontal Smooth Tubes and Enhanced Tubes Fabricated by Selective Laser Melting
,”
Int. J. Heat Mass Transfer
,
126
, pp.
949
962
. 10.1016/j.ijheatmasstransfer.2018.04.163
26.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
,
2010
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP. 9.0. NIST NSRDS
.
27.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
8
16
.
28.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
. 10.1016/S0065-2717(08)70153-9
29.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiator of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
. 10.1016/0735-1933(85)90003-X
30.
Shah
,
M. M.
,
1979
, “
A General Correlation for Heat Transfer During Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
,
22
(
4
), pp.
547
556
. 10.1016/0017-9310(79)90058-9
31.
Dorao
,
C. A.
, and
Fernandino
,
M.
,
2018
, “
Simple and General Correlation for Heat Transfer During Flow Condensation Inside Plain Pipes
,”
Int. J. Heat Mass Transfer
,
122
, pp.
290
305
. 10.1016/j.ijheatmasstransfer.2018.01.097
32.
Wojtan
,
L.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
,
2005
, “
Investigation of Flow Boiling in Horizontal Tubes: Part I—A New Diabetic Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2955
2969
. 10.1016/j.ijheatmasstransfer.2004.12.012
33.
Liu
,
Z.
, and
Winterton
,
R. H. S.
,
1991
, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2759
2766
. 10.1016/0017-9310(91)90234-6
34.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
219
228
. 10.1115/1.2910348
You do not currently have access to this content.