Abstract

Discoidal rotor–stator systems are especially used in rotating machines and in numerous industrial applications. The design of high-power machine requires compliance with certain cooling-related stresses. Using an air jet impinging on a rotating disk is one way to increase the global heat exchange. This work focuses on the numerical and experimental study of convective heat transfer in a rotor of a discoidal machine with an eccentric impinging jet. Convective heat transfers are determined experimentally in steady state on the surface of a single rotating disk. The experimental technique is based on the use of infrared thermography to access surface temperature measurement and on the numerical resolution of the energy equation in steady state to evaluate local convective coefficients. The results from the numerical simulation are compared with heat transfer experiments for rotational Reynolds numbers between 2.38 × 105 and 5.44 × 105 and for the jet's Reynolds numbers ranging from 16.5 × 103 to 49.6 × 103. A good agreement between the two approaches was obtained in the case of a single rotating disk, which confirms us in the choice of our numerical model. On the other hand, a numerical study of the flow and convective heat transfer in the case of an unconfined rotor–stator system with an eccentric air jet impinging and for a dimensionless spacing G = 0.02 was carried out. The results obtained revealed the presence of different heat transfer zones dominated either by rotation only, by the air flow only, or by the dynamics of the rotation flow superimposed on that of the air flow. Critical radii on the rotor surface have been identified.

References

References
1.
Tarfaoui
,
M.
,
Nachtane
,
M.
, and
Boudounit
,
H.
,
2020
, “
Finite Element Analysis of Composite Offshore Wind Turbine Blades Under Operating Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
1
), p.
011001
. 10.1115/1.4042123
2.
Boutarfa
,
R.
, and
Harmand
,
S.
,
2003
, “
Local Convective Heat Exchanges and Flow Structure in a Rotor–Stator System
,”
Int. J. Therm. Sci.
,
42
(
12
), pp.
1129
1143
. 10.1016/S1290-0729(03)00092-9
3.
Boutarfa
,
R.
, and
Harmand
,
S.
,
2005
, “
Local Convective Heat Transfer for Laminar and Turbulent Flow in a Rotor–Stator System
,”
Exp. Fluids
,
38
(
2
), pp.
209
221
. 10.1007/s00348-004-0900-5
4.
v Kármán
,
T.
,
1921
, “
Über Laminare und Turbulente Reibung
,”
J. Appl. Math. Mech.
,
1
(
4
), pp.
233
252
. 10.1002/zamm.19210010401
5.
Goldstein
,
S.
,
1935
, “
On the Resistance to the Rotation of a Disc Immersed in a Fluid
,”
Proc. Cambridge Philos. Soc.
,
31
(
2
), pp.
232
241
. 10.1017/S0305004100013323
6.
Cobb
,
E. C.
, and
Saunders
,
O. A.
,
1956
, “
Heat Transfer From a Rotating Disk
,”
Proc. R. Soc. Lond. Ser. A
,
236
(
1206
), pp.
343
351
. 10.1098/rspa.1956.0141
7.
Dorfman
,
L. A.
,
1963
,
Hydrodynamic Resistance and Heat Loss of Rotating Solids
,
Oliver and Boyd
,
Edinburgh
.
8.
Northrop
,
A.
, and
Owen
,
J. M.
,
1988
, “
Heat Transfer Measurements in Rotating-Disc Systems Part 1: The Free Disc
,”
Int. J. Heat Fluid Flow
,
9
(
1
), pp.
19
26
. 10.1016/0142-727X(88)90026-4
9.
Pellé
,
J.
,
2006
,
Etude Expérimentale des échanges Convectifs sur le Rotor D’une Machine Discoïde: Influence D’un jet Impactant
,
Doctoral dissertation, Université de Lille Nord de France
,
Valenciennes
.
10.
Angioletti
,
M.
,
Di Tommaso
,
R. M.
,
Nino
,
E.
, and
Ruocco
,
G.
,
2003
, “
Simultaneous Visualization of Flow Field and Evaluation of Local Heat Transfer by Transitional Impinging Jets
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1703
1713
. 10.1016/S0017-9310(02)00479-9
11.
Chen
,
Y.-M.
,
Lee
,
W.-T.
, and
Wu
,
S.-J.
,
1998
, “
Heat (Mass) Transfer Between an Impinging Jet and a Rotating Disk
,”
Heat Mass Transfer
,
34
(
2–3
), pp.
195
201
. 10.1007/s002310050249
12.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
, “Flow and Heat Transfer in Rotating-Disc Systems in Rotating-Disc Systems,”
Rotor–Stator Systems
, Vol.
1
,
Research Studies Press and John Wiley
,
Taunton, UK
.
13.
Popiel
,
C. O.
, and
Boguslawski
,
L.
,
1986
, “
Local Heat Transfer From a Rotating Disk in an Impinging Round Jet
,”
ASME J. Heat Transfer
,
108
(
2
), pp.
357
364
. 10.1115/1.3246929
14.
Batchelor
,
G. K.
,
1951
, “
Note on a Class of Solutions of the Navier–Stokes Equations Representing Steady Rotationally-Symmetric Flow
,”
Q. J. Mech. Appl. Math.
,
4
(
1
), pp.
29
41
. 10.1093/qjmam/4.1.29
15.
Stewartson
,
K.
,
1953
, “
On the Flow Between Two Rotating Coaxial Disks
,”
Math. Proc. Cambridge Philos. Soc.
,
49
(
2
), pp.
333
341
. 10.1017/S0305004100028437
16.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
J. Basic Eng.
,
82
(
1
), pp.
217
230
. 10.1115/1.3662532
17.
Şara
,
O. N.
,
Erkmen
,
J.
,
Yapici
,
S.
, and
Çopur
,
M.
,
2008
, “
Electrochemical Mass Transfer Between an Impinging Jet and a Rotating Disk in a Confined System
,”
Int. Commun. Heat Mass Transfer
,
35
(
3
), pp.
289
298
. 10.1016/j.icheatmasstransfer.2007.07.004
18.
Pellé
,
J.
, and
Harmand
,
S.
,
2009
, “
Heat Transfer Study in a Rotor–Stator System Air-Gap With an Axial Inflow
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1532
1543
. 10.1016/j.applthermaleng.2008.07.014
19.
Nguyen
,
T. D.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Poncet
,
S.
,
2012
, “
PIV Measurements of an Air Jet Impinging on an Open Rotor–Stator System
,”
Exp. Fluids
,
53
(
2
), pp.
401
412
. 10.1007/s00348-012-1298-0
20.
Poncet
,
S.
,
2013
, “
Turbulent Impinging Jet Flow Into an Unshrouded Rotor–Stator System: Hydrodynamics and Heat Transfer
,”
Int. J. Heat Fluid Flow
,
44
(
6
), pp.
719
734
. 10.1016/j.ijheatfluidflow.2013.10.001
21.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
. 10.1016/0017-9310(94)90059-0
22.
ansys fluent
,
2009
,
12.0 Theory Guide
, Vol.
5
,
Ansys Inc.
,
Canonsburg, PA
.
23.
Gatski
,
T. B.
,
Hussaini
,
M. Y.
, and
Lumley
,
J. L.
,
1996
,
Simulation and Modeling of Turbulent Flows
,
Oxford University Press
,
New York
.
24.
Yuan
,
Z. X.
,
Saniei
,
N.
, and
Yan
,
X. T.
,
2003
, “
Turbulent Heat Transfer on the Stationary Disk in a Rotor–Stator System
,”
Int. J. Heat Mass Transfer
,
46
(
12
), pp.
2207
2218
. 10.1016/S0017-9310(02)00525-2
25.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
. 10.1080/01495728408961817
26.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.