Abstract

The pilot diesel quantity (mpilot) has an impact on the liqueified nitrogen gas (LNG)-diesel dual-fuel engine, but it is very difficult for a dual-fuel engine with the traditional injection system to adjust mpilot to meet various operating conditions in practice. In recent years, with great progress in common rail diesel injection technology, mpilot can be adjusted accurately by the electronic control system, which is an advantage for operation with the diesel–LNG dual-fuel. In order to optimize mpilot of the diesel–LNG dual-fuel engine, the combustion and performance of a dual-fuel engine with the mpilot of 5.05 mg/cyc, 5.20 mg/cyc, 5.69 mg/cyc, 6.31 mg/cyc and 6.91 mg/cyc under 50% load at speed of 1600 r/min were analyzed. Experimental results show that, with an increase in mpilot, the maximum in-cylinder pressure, rate of pressure rise, and heat release rate of dual-fuel obviously increase, the crank angles of the maximum value move forward, and the combustion duration becomes shorter. The mean value of peak in-cylinder pressure (pmax) increases obviously while the standard deviation of it decreases, and the distribution of that focuses. The mean value of the crank angle corresponding to pmax pressure decreases except for the mpilot of 5.05 mg/cyc, while the standard deviation of that gradually decreases, the distribution of it focuses and moves forward. The brake power increases while the brake-specific fuel consumption (BSFC) decreases, the CO and HC decrease, while the CO2, NOx, and smoke density emissions increase.

References

References
1.
Guerry
,
E. S.
,
Raihan
,
M. S.
,
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Sohail
,
A.
,
2016
, “
Injection Timing Effects on Partially Premixed Diesel–Methane Dual Fuel Low Temperature Combustion
,”
Appl. Energy
,
162
(
1
), pp.
99
113
. 10.1016/j.apenergy.2015.10.085
2.
Wei
,
L.
, and
Geng
,
P.
,
2016
, “
A Review on Natural gas/Diesel Dual Fuel Combustion, Emissions and Performance
,”
Fuel Process. Technol.
,
142
(
2
), pp.
264
278
. 10.1016/j.fuproc.2015.09.018
3.
Nithyanandan
,
K.
,
Lin
,
Y.
,
Donahue
,
R.
,
Meng
,
X.
,
Zhang
,
J.
, and
Lee
,
C. F.
,
2016
, “
Characterization of Soot From Diesel-CNG Dual-Fuel Combustion in a CI Engine
,”
Fuel
,
184
(
22
), pp.
145
152
. 10.1016/j.fuel.2016.06.028
4.
Chen
,
Z.
,
Yao
,
C.
,
Wang
,
Q.
,
Han
,
G.
,
Dou
,
Z.
,
Wei
,
H.
,
Wang
,
B.
,
Liu
,
M.
, and
Wu
,
T.
,
2016
, “
Study of Cylinder-to-Cylinder Variation in a Diesel Engine Fueled with Diesel/Methanol Dual Fuel
,”
Fuel
,
170
(
8
), pp.
67
76
. 10.1016/j.fuel.2015.12.019
5.
Chen
,
H.
,
Su
,
X.
,
He
,
J.
, and
Xie
,
B.
,
2019
, “
Investigation on Combustion and Emission Characteristics of a Common Rail Diesel Engine Fueled with Diesel/n-Pentanol/Methanol Blends
,”
Energy
,
167
(
2
), pp.
297
311
. 10.1016/j.energy.2018.10.199
6.
Papagiannakis
,
R. G.
,
Krishnan
,
S. R.
,
Rakopoulos
,
D. C.
,
Srinivasan
,
K. K.
, and
Rakopoulos
,
C. D.
,
2017
, “
A Combined Experimental and Theoretical Study of Diesel Fuel Injection Timing and Gaseous Fuel/Diesel Mass Ratio Effects on the Performance and Emissions of Natural Gas-Diesel HDDI Engine Operating at Various Loads
,”
Fuel
,
202
(
16
), pp.
675
687
. 10.1016/j.fuel.2017.05.012
7.
Chen
,
H.
,
Su
,
X.
,
Li
,
J.
, and
Zhong
,
X.
,
2019
, “
Effects of Gasoline and Polyoxymethylene Dimethyl Ethers Blending in Diesel on the Combustion and Emission of a Common Rail Diesel Engine
,”
Energy
,
171
(
6
), pp.
981
999
. 10.1016/j.energy.2019.01.089
8.
Deniz
,
C.
, and
Zincir
,
B.
,
2016
, “
Environmental and Economical Assessment of Alternative Marine Fuels
,”
J. Cleaner Prod.
,
113
(
3
), pp.
438
449
. 10.1016/j.jclepro.2015.11.089
9.
Kumar
,
S.
,
Kwon
,
H.
,
Choi
,
K.
,
Lim
,
W.
,
Cho
,
J. H.
,
Tak
,
K.
, and
Moon
,
I.
,
2011
, “
LNG: An eco-Friendly Cryogenic Fuel for Sustainable Development
,”
Appl. Energy
,
88
(
12
), pp.
4264
4273
. 10.1016/j.apenergy.2011.06.035
10.
Stefana
,
E.
,
Marciano
,
F.
, and
Alberti
,
M.
,
2016
, “
Qualitative Risk Assessment of a Dual Fuel (LNG-Diesel) System for Heavy-Duty Trucks
,”
J. Loss Prev. Process Ind.
,
39
(
1
), pp.
39
58
. 10.1016/j.jlp.2015.11.007
11.
Liu
,
J.
,
Yang
,
F.
,
Wang
,
H.
,
Ouyang
,
M.
, and
Hao
,
S.
,
2013
, “
Effects of Pilot Fuel Quantity on the Emissions Characteristics of a CNG/Diesel Dual Fuel Engine with Optimized Pilot Injection Timing
,”
Appl. Energy
,
110
(
10
), pp.
201
206
. 10.1016/j.apenergy.2013.03.024
12.
McTaggart-Cowan
,
G. P.
,
Bushe
,
W. K.
,
Hill
,
P. G.
, and
Munshi
,
S. R.
,
2003
, “
A Supercharged Heavy-Duty Diesel Single-Cylinder Research Engine for High-Pressure Direct Injection of Natural gas
,”
Int. J. Engine Res.
,
4
(
4
), pp.
315
330
. 10.1243/146808703322743912
13.
Li
,
W.
,
Liu
,
Z.
, and
Wang
,
Z.
,
2016
, “
Experimental and Theoretical Analysis of the Combustion Process at low Loads of a Diesel Natural gas Dual-Fuel Engine
,”
Energy
,
94
(
1
), pp.
728
741
. 10.1016/j.energy.2015.11.052
14.
Wang
,
Z.
,
Du
,
G.
,
Wang
,
D.
,
Xu
,
Y.
, and
Shao
,
M.
,
2018
, “
Combustion Process Decoupling of a Diesel/Natural Gas Dual-Fuel Engine at Low Loads
,”
Fuel
,
232
(
22
), pp.
550
561
. 10.1016/j.fuel.2018.05.152
15.
Mousavi
,
S. M.
,
Saray
,
R. K.
,
Poorghasemi
,
K.
, and
Maghbouli
,
A.
,
2016
, “
A Numerical Investigation on Combustion and Emission Characteristics of a Dual Fuel Engine at Part Load Condition
,”
Fuel
,
166
(
4
), pp.
309
319
. 10.1016/j.fuel.2015.10.052
16.
Namasivayam
,
A. M.
,
Crookes
,
R. J.
,
Korakianitis
,
T.
, and
Olsen
,
J.
,
2009
, “
Assessment of Combustion in Natural gas Dual-Fuelled Compression Ignition Engines with Dimethyl Ether and Rapeseed Methyl Ester Pilot Ignition
,”
Int. J. Engine Res.
,
10
(
3
), pp.
165
174
. 10.1243/14680874JER02909
17.
Zhang
,
C.
, and
Song
,
J.
,
2016
, “
Experimental Study of co-Combustion Ratio on Fuel Consumption and Emissions of NG–Diesel Dual-Fuel Heavy-Duty Engine Equipped with a Common Rail Injection System
,”
J. Energy Inst.
,
89
(
4
), pp.
578
585
. 10.1016/j.joei.2015.06.005
18.
Hosmath
,
R. S.
,
Banapurmath
,
N. R.
,
Khandal
,
S. V.
,
Gaitonde
,
V. N.
,
Basavarajappa
,
Y. H.
, and
Yaliwal
,
V. S.
,
2016
, “
Effect of Compression Ratio, CNG Flow Rate and Injection Timing on the Performance of Dual Fuel Engine Operated on Honge oil Methyl Ester (HOME) and Compressed Natural gas (CNG)
,”
Renewable Energy
,
93
(
9
), pp.
579
590
. 10.1016/j.renene.2016.03.010
19.
Singh
,
S.
,
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
,
Midkiff
,
K. C.
, and
Bell
,
S. R.
,
2005
, “
Effect of Pilot Injection Timing, Pilot Quantity and Intake Charge Conditions on Performance and Emissions for an Advanced Low-Pilot-Ignited Natural Gas Engine
,”
Int. J. Engine Res.
,
5
(
4
), pp.
329
348
. 10.1243/146808704323224231
20.
Abdelaal
,
M. M.
, and
Hegab
,
A. H.
,
2012
, “
Combustion and Emission Characteristics of a Natural gas-Fueled Diesel Engine With EGR
,”
Energ Convers. Manage.
,
64
(
12
), pp.
301
312
. 10.1016/j.enconman.2012.05.021
21.
Sahoo
,
B. B.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2009
, “
Effect of Engine Parameters and Type of Gaseous Fuel on the Performance of Dual-Fuel gas Diesel Engines—a Critical Review
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1151
1184
. 10.1016/j.rser.2008.08.003
22.
Sun
,
L.
,
Liu
,
Y.
,
Zeng
,
K.
,
Yang
,
R.
, and
Hang
,
Z.
,
2014
, “
Combustion Performance and Stability of a Dual-Fuel Diesel-Natural-gas Engine
,”
Proc. Inst. Mech. Eng., Part D
,
229
(
3
), pp.
235
246
. 10.1177/0954407014537814
23.
Zhou
,
L.
,
Liu
,
Y.
,
Wu
,
C.
,
Sun
,
L.
,
Wang
,
L.
,
Zeng
,
K.
, and
Huang
,
Z.
,
2013
, “
Effect of the Diesel Injection Timing and the Pilot Quantity on the Combustion Characteristics and the Fine-Particle Emissions in a Micro-Diesel Pilot-Ignited Natural-gas Engine
,”
Proc. Inst. Mech. Eng., Part D
,
227
(
8
), pp.
1142
1152
. 10.1177/0954407013480452
24.
Wang
,
Z.
,
Zhao
,
Z.
,
Wang
,
D.
,
Tan
,
M.
,
Han
,
Y.
,
Liu
,
Z.
, and
Dou
,
H.
,
2016
, “
Impact of Pilot Diesel Ignition Mode on Combustion and Emissions Characteristics of a Diesel/Natural gas Dual Fuel Heavy-Duty Engine
,”
Fuel
,
167
(
5
), pp.
248
256
. 10.1016/j.fuel.2015.11.077
25.
Song
,
J.
,
Zhang
,
C.
,
Lin
,
G.
, and
Zhang
,
Q.
,
2019
, “
Performance and Emissions of an Electronic Control Common-Rail Diesel Engine Fuelled with Liquefied Natural gas-Diesel Dual-Fuel Under an Optimization Control Scheme
,”
Proc. Inst. Mech. Eng.
,
233
(
6
), pp.
1380
1390
. 10.1177/0954407018801076
26.
Zhang
,
C.
,
Zhou
,
A.
,
Shen
,
Y.
,
Li
,
Y.
, and
Shi
,
Q.
,
2017
, “
Effects of Combustion Duration Characteristic on the Brake Thermal Efficiency and NOx Emission of a Turbocharged Diesel Engine Fueled with Diesel-LNG Dual-Fuel
,”
Appl. Therm. Eng.
,
127
(
18
), pp.
312
318
. 10.1016/j.applthermaleng.2017.08.034
27.
Holman
,
J. P.
,
2012
,
Experimental Methods for Engineers
,
McGraw-Hill
,
NewYork
.
28.
Wang
,
Y.
,
Xiao
,
F.
,
Zhao
,
Y.
,
Li
,
D.
, and
Lei
,
X.
,
2015
, “
Study on Cycle-by-Cycle Variations in a Diesel Engine with Dimethyl Ether as Port Premixing Fuel
,”
Appl. Energy
,
143
(
7
), pp.
58
70
. 10.1016/j.apenergy.2014.12.079
29.
Wang
,
Q.
,
Wang
,
B.
,
Yao
,
C.
,
Liu
,
M.
,
Wu
,
T.
,
Wei
,
H.
, and
Dou
,
Z.
,
2016
, “
Study on Cyclic Variability of Dual Fuel Combustion in a Methanol Fumigated Diesel Engine
,”
Fuel
,
164
(
2
), pp.
99
109
. 10.1016/j.fuel.2015.10.003
30.
Yu
,
X.
,
Wu
,
H.
,
Du
,
Y.
,
Tang
,
Y.
,
Liu
,
L.
, and
Niu
,
R.
,
2016
, “
Research on Cycle-by-Cycle Variations of an SI Engine with Hydrogen Direct Injection Under Lean Burn Conditions
,”
Appl. Therm. Eng.
,
109
(
18
), pp.
569
581
. 10.1016/j.applthermaleng.2016.08.077
31.
Zhao
,
Z.
,
Wu
,
D.
,
Zhang
,
Z.
,
Zhang
,
F.
, and
Zhao
,
C.
,
2014
, “
Experimental Investigation of the Cycle-to-Cycle Variations in Combustion Process of a Hydraulic Free-Piston Engine
,”
Energy
,
78
(
15
), pp.
257
265
. 10.1016/j.energy.2014.10.001
32.
Abd Alla
,
G. H.
,
Soliman
,
H. A.
,
Badr
,
O. A.
, and
Abd Rabbo
,
M. F.
,
2000
, “
Effect of Pilot Fuel Quantity on the Performance of a Dual Fuel Engine
,”
Energy Convers. Manage.
,
41
(
6
), pp.
559
572
. 10.1016/S0196-8904(99)00124-7
You do not currently have access to this content.