Abstract

In the current work, by using various additives, the spray cooling in the transition boiling regime is significantly augmented due to the vapor film instability enhancing, which helps to overcome the disadvantages reported in the open literature for the attainment of high heat flux in the aforesaid boiling regime. Saline water containing dissolved carbon dioxide produces two favorable conditions for high heat transfer rate: (1) controlled vapor bubble nucleation and (2) low entrapped vapor bubbles coalescence rate. These phenomena are the parameters defining the step-up in the heat transfer rate. Systematic spray cooling (from 900 °C) experiments were conducted on a 6-mm thick AISI 304 steel plate (100 mm × 100 mm). The heat transfer analysis indicates that the heat removal rate in case of soda added water depicts an increasing trend with the rising of the soda concentration up to 40% in water, and further increment in soda water concentration declines the heat removal rate due to the formation of the uncontrolled vapor bubbles undergoing early coalescence. In case of salt added carbonated water spray cooling, the quenching performance indicates step-up in critical heat flux up to 1.7 MW/m2. In addition to the above, the spray cooling performance of the above-stated coolant is compared with other potential coolants such as soda–surfactant–water, soda–alcohol–water and soda–salt–surfactant–water mixtures.

References

References
1.
Mohapatra
,
S. S.
,
Chakraborty
,
S.
, and
Pal
,
S. K.
,
2012
, “
Experimental Studies on Different Cooling Processes to Achieve Ultra-Fast Cooling Rate for hot Steel Plate
,”
Exp. Heat Transfer.
,
25
(
3
), pp.
111
126
. 10.1080/08916152.2011.582567
2.
Bhatt
,
N. H.
,
Das
,
L.
,
Raj
,
R.
,
Varshney
,
P.
,
Pati
,
A. R.
,
Chouhan
,
D.
,
Kumar
,
A.
,
Munshi
,
B.
, and
Mohapatra
,
S. S.
,
2017
, “
Enhancement of Heat Transfer Rate of High Mass Flux Spray Cooling by Ethanol-Water and Ethanol-Tween20-Water Solution at Very High Initial Surface Temperature
,”
Int. J. Heat Mass Transf.
,
110
(
4
), pp.
330
347
. 10.1016/j.ijheatmasstransfer.2017.02.094
3.
Cox
,
S. D.
,
Hardy
,
S. J.
, and
Parker
,
D. J.
,
2001
, “
Influence of Run Out Table Operation Set Up on Hot Strip Quality, Subject to Initial Strip Condition: Heat Transfer Issues
,”
Ironmaking Steelmaking
,
28
(
5
), pp.
363
372
. 10.1179/irs.2001.28.5.363
4.
Sun
,
Y.
, and
Wu
,
D.
,
2009
, “
Effect of Ultra-Fast Cooling on Microstructure of Large Section Bars of Bearing Steel
,”
Int. J. Iron Steel Res.
,
16
(
5
), pp.
61
65
. 10.1016/S1006-706X(10)60012-X
5.
Bromley
,
L. A.
,
1950
, “
Heat Transfer in Stable Film Boiling
,”
Chem. Eng. Progr.
,
46
(
11
), pp.
221
227
.
6.
Deb
,
S.
, and
Yao
,
S. C.
,
1989
, “
Analysis on Film Boiling Heat Transfer of Impacting Sprays
,”
Int. J. Heat Mass Transf.
,
32
(
11
), pp.
2099
2112
. 10.1016/0017-9310(89)90117-8
7.
DiMarzo
,
M.
, and
Evans
,
D. D.
,
1989
, “
Evaporation of a Water Droplet Deposited on a Hot High Thermal Conductivity Solid Surface
,”
ASME J. Heat Transfer.
,
111
(
1
), pp.
210
213
. 10.1115/1.3250652
8.
DiMarzo
,
M.
, and
Evans
,
D. D.
,
1989
, “
Dropwise Evaporative Cooling of High Thermal Conductivity Materials
,”
Heat Technol.
,
5
(
1
), pp.
126
136
.
9.
DiMarzo
,
M.
,
Tartarini
,
P.
,
Liao
,
Y.
,
Evans
,
D. D.
, and
Baum
,
H.
,
1991
, “
Dropwise Evaporative Cooling
,”
ASME-HTD
,
166
(
1
), pp.
51
58
.
10.
Gradeck
,
M.
,
Ouattara
,
A.
,
Maillet
,
D.
,
Gardin
,
P.
, and
Lebouché
,
M.
,
2011
, “
Heat Transfer Associated to a Hot Surface Quenched by a Jet of Oil-in-Water Emulsion
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
841
847
. 10.1016/j.expthermflusci.2010.07.002
11.
Mohapatra
,
S. S.
,
Ravikumar
,
S. V.
,
Verma
,
A.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Experimental Investigation of Effect of a Surfactant to Increase Cooling of Hot Steel Plates by a Water Jet
,”
ASME J. Heat Transfer Trans.
,
135
(
3
), p.
032101
. 10.1115/1.4007878
12.
Bhatt
,
N. H.
,
Pati
,
A. R.
,
Das
,
L.
,
Panda
,
A.
,
Varshney
,
P.
,
Kumar
,
A.
,
Munshi
,
B.
, and
Mohapatra
,
S. S.
,
2017
, “
The Diminishment of Specific Heat and Surface Tension of Coolant Droplet in a Dropwise Evaporation Process: A Novel Methodology to Enhance the Heat Transfer Rate
,”
Expt. Heat Trans.
,
31
(
1
), pp.
355
372
.
13.
Pati
,
A. R.
,
Das
,
L.
,
Behera
,
A. P.
,
Munshi
,
B.
, and
Mohapatra
,
S. S.
,
2017
, “
Enhancement of Heat Removal Rate of High Mass Flux Spray Cooling by Sea Water
,”
Exp. Therm. Fluid Sci.
,
89
(
1
), pp.
19
40
. 10.1016/j.expthermflusci.2017.07.012
14.
Chandra
,
S.
,
diMarzo
,
M.
,
Qiao
,
Y. M.
, and
Tartarini
,
P.
,
1996
, “
Effect of Liquid-Solid Contact Angle on Droplet Evaporation
,”
Fire Safety J.
,
27
(
2
), pp.
141
158
. 10.1016/S0379-7112(96)00040-9
15.
Qiao
,
Y. M.
, and
Chandra
,
S.
,
1998
, “
Spray Cooling Enhancement by Addition of a Surfactant
,”
J. Heat Transf.
,
120
(
1
), pp.
92
98
. 10.1115/1.2830070
16.
Bhatt
,
N. H.
,
Pati
,
A. R.
,
Kumar
,
A.
,
Behera
,
A.
,
Munshi
,
B.
, and
Mohapatra
,
S. S.
,
2017
, “
High Mass Flux Spray Cooling With Additives of Low Specific Heat and Surface Tension: A Novel Process to Enhance the Heat Removal Rate
,”
Appl. Therm. Engg.
,
120
(
1
), pp.
537
548
. 10.1016/j.applthermaleng.2017.03.137
17.
Ravikumar
,
S. V.
,
Jha
,
J. M.
,
Tiara
,
A. M.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2014
, “
Experimental Investigation of Air-Atomized Spray With Aqueous Polymer Additive for High Heat Flux Applications
,”
Int. J Heat Mass Transf.
,
72
(
1
), pp.
362
367
. 10.1016/j.ijheatmasstransfer.2014.01.024
18.
Bhatt
,
N. H.
,
Chouhan
,
D.
,
Pati
,
A. R.
,
Varshney
,
P.
,
Das
,
L.
,
Kumar
,
A.
,
Munshi
,
B.
,
Behera
,
A.
, and
Mohapatra
,
S. S.
,
2016
, “
Role of Water Temperature in Case of High Mass Flux Spray Cooling of a hot AISI 304 Steel Plate at Different Initial Surface Temperatures
,”
Exp. Heat Transfer.
,
30
(
5
), pp.
369
392
. 10.1080/08916152.2016.1269138
19.
Marrucci
,
G.
,
1969
, “
A Theory of Coalescence
,”
Chem. Eng. Sci.
,
24
(
6
), pp.
975
985
. 10.1016/0009-2509(69)87006-5
20.
Adams
,
T. M.
,
Ghiaasiaan
,
S. M.
, and
Abdel-Khalik
,
S. I.
,
1999
, “
Enhancement of Liquid Forced Convection Heat Transfer in Microchannels Due to the Release of Dissolved Noncondensables
,”
Int. J. Heat Mass Transfer
,
42
(
19
), pp.
3563
3573
. 10.1016/S0017-9310(99)00023-X
21.
Behar
,
M.
,
Courtaud
,
M.
,
Ricque
,
R.
, and
Semeria
,
R.
,
1966
, “
Fundamental Aspects of Subcooled Boiling With and Without Dissolved Gases
,”
Proc. Int. Heat Transfer Conf.
,
3
, pp.
1
11
. 10.1615/IHTC3.1110
22.
Lubetkin
,
S. D.
, and
Akhtar
,
M.
,
1996
, “
The Variation of Surface Tension and Contact Angle Under Applied Pressure of Dissolved Gases, and the Effects of These Changes on the Rate of Bubble Nucleation
,”
J. Colloid Interface Sci.
,
180
(
1
), pp.
43
60
. 10.1006/jcis.1996.0272
23.
Pati
,
A. R.
,
Kumar
,
A.
, and
Mohapatra
,
S. S.
,
2017
, “
Upward and Downward Facing High Mass Flux Spray Cooling With Additives: A Novel Technique to Enhance the Heat Removal Rate at High Initial Surface Temperature
,”
Heat Mass Transfer
,
54
(
6
), pp.
1669
1680
. 10.1007/s00231-017-2258-2
24.
Li
,
D. I.
, and
Wells
,
M. A.
,
2015
, “
Effect of Subsurface Thermocouple Installation on the Discrepancy of the Measured Thermal History and Predicted Surface Heat Flux During a Quench Operation
,”
Metall. Mater. Trans. B
,
36
(
3
), pp.
343
354
.
25.
Pati
,
A. R.
,
Bhatt
,
N. H.
,
Das
,
L.
,
Teja
,
S.
,
Nayak
,
S.
,
Kumar
,
A.
,
Sahoo
,
A.
,
Munshi
,
B.
,
Behera
,
A.
,
Sutar
,
H.
, and
Mohapatra
,
S. S.
,
2018
, “
The Discrepancy in the Prediction of Surface Temperatures by Inverse Heat Conduction Models for Different Quenching Processes From Very High Initial Surface Temperature
,”
Inverse Probl. Sci. Eng.
,
27
(
6
), pp.
808
835
. 10.1080/17415977.2018.1501369
26.
Pati
,
A. R.
, and
Mohapatra
,
S. S.
,
2018
, “
The Effect of Oxide Layer in Case of Novel Coolant Spray at Very High Initial Surface Temperature
,”
Exp. Heat Transf.
,
32
(
2
), pp.
116
132
. 10.1080/08916152.2018.1485784
27.
Mohapatra
,
S. S.
,
Jha
,
J. M.
,
Ravikumar
,
S. V.
,
Singh
,
A.
,
Bhatacharya
,
C.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2015
, “
Effect of Oxide Layer in the Ultra-Fast Cooling of a Steel Plate
,”
Exp. Heat Transf.
,
28
(
2
), pp.
156
173
. 10.1080/08916152.2013.845624
28.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
2003
,
INTEMP-Inverse Heat Transfer Analysis User’s Manual
,
Trucomp Co.
,
Fountain Valley, Canada
, pp.
1
47
.
29.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
1997
,
Practical Inverse Analysis in Engineering
,
CRC press, LLC
,
Boca Raton, FL
.
30.
Panda
,
A.
,
Pati
,
A. R.
,
Pradhan
,
S.
,
Saha
,
B.
,
Kumar
,
A.
, and
Mohapatra
,
S. S.
,
2018
, “
High Mass Flux air Atomized Spray With Subcooled Water: A Novel Methodology to Enhance the Heat Transfer Rate in Film Boiling Regime
,”
Int. J. Heat Mass Transf.
,
120
(
1
), pp.
1287
1304
. 10.1016/j.ijheatmasstransfer.2017.12.051
31.
Nasr
,
G. G.
, and
Yule
,
A. J.
,
1999
, “
Studies of High Pressure Water Sprays From Full-Cone Atomizers
,”
Conference Proceedings, ILASS-Europe
,
Onera, Toulouse
,
July 5–7
, pp.
1
10
.
32.
Das
,
L.
,
Munshi
,
B.
, and
Mohapatra
,
S. S.
,
2019
, “
The Role of Surface Tension and Viscosity of the Coolant on Spray Cooling Performance of Red-Hot Inclined Steel Plate
,”
Int. J. Heat Mass Transf.
,
130
(
1
), pp.
496
513
.
You do not currently have access to this content.