Abstract

The effects of pulsation intensities on the flame characteristics of a 10 deg-backward-inclined jet flame in the crossflow were investigated in a wind tunnel. The jet and the crossflow Reynolds numbers were 1527 and 2165, respectively. The jet-to-crossflow momentum flux ratio was 0.10. A loudspeaker was used to acoustically excite the jet flame. The excitation Strouhal number was 0.73, while the jet pulsation intensities varied from 0 to 1.26. The flame behaviors were studied through photography techniques. The flame temperatures were measured using a fine-wire R-type thermocouple. The combustion-induced emissions were probed by a commercial multi-gas analyzer. The jet flames were categorized into five characteristic modes with increasing pulsation intensities. Mode I was characterized by a yellowish down-washed recirculation flame, a blue neck flame, and a yellow tail flame. Modes II and III featured a split yellow tail flame, a yellowish recirculation flame, and a blue neck flame. Mode IV was characterized by a blue down-washed recirculation flame and neck flame, as well as a split yellow tail flame. Mode V was identified by a single yellow tail flame and the absence of the down-washed recirculation flame. When the jet flames were excited beyond mode I, the combustion-induced pollutants of carbon monoxide and nitric oxide were significantly reduced. However, the excited jet flame in mode V displayed low temperatures in the near-tube region.

References

References
1.
Escudier
,
M. P.
,
1971
, “
Aerodynamics of a Burning Turbulent Gas Jet in a Crossflow
,”
Combust. Sci. Technol.
,
4
(
1
), pp.
293
301
. 10.1080/00102207108952495
2.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
,
2001
, “
Transverse Jets and Jet Flames. Part 1. Scaling Laws for Strong Transverse Jets
,”
J. Fluid Mech.
,
443
, pp.
1
25
. 10.1017/S0022112001005146
3.
Karagozian
,
A. R.
,
1986
, “
The Flame Structure and Vorticity Generated by a Chemically Reacting Transverse Jet
,”
AIAA J.
,
24
(
9
), pp.
1502
1507
. 10.2514/3.9472
4.
Katta
,
V. R.
,
Blunck
,
D. L.
,
Jiang
,
N.
,
Lynch
,
A.
,
Gord
,
J. R.
, and
Roy
,
S.
,
2015
, “
On Flames Established With Air Jet in Cross Flow of Fuel-Rich Combustion Products
,”
Fuel
,
150
, pp.
360
369
. 10.1016/j.fuel.2015.02.006
5.
Kolla
,
H.
,
Grout
,
R. W.
,
Gruber
,
A.
, and
Chen
,
J. H.
,
2012
, “
Mechanisms of Flame Stabilization and Blowout in a Reacting Turbulent Hydrogen Jet in Cross-Flow
,”
Combust. Flame
,
159
(
8
), pp.
2755
2766
. 10.1016/j.combustflame.2012.01.012
6.
Steinberg
,
A. M.
,
Sadanandan
,
R.
,
Dem
,
C.
,
Kutne
,
P.
, and
Meier
,
W.
,
2013
, “
Structure and Stabilization of Hydrogen Jet Flames in Cross-Flows
,”
P. Combust. Inst.
,
34
(
1
), pp.
1499
1507
. 10.1016/j.proci.2012.06.026
7.
Wagner
,
J. A.
,
Grib
,
S. W.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2015
, “
Flowfield Measurements and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Combust. Flame
,
62
(
10
), pp.
3711
3727
. 10.1016/j.combustflame.2015.07.010
8.
Askari
,
A.
,
Bullman
,
S. J.
,
Fairweather
,
M.
, and
Swaffield
,
F.
,
1990
, “
The Concentration Field of a Turbulent Jet in a Cross-Wind
,”
Combust. Sci. Technol.
,
73
(
1–3
), pp.
463
478
. 10.1080/00102209008951663
9.
Bandaru
,
R. V.
, and
Turns
,
S. R.
,
2000
, “
Turbulent Jet Flames in a Crossflow: Effects of Some Jet, Crossflow, and Pilot-Flame Parameters on Emissions
,”
Combust. Flame
,
121
(
1–2
), pp.
137
151
. 10.1016/S0010-2180(99)00166-2
10.
Birch
,
A. D.
,
Brown
,
D. R.
,
Fairweather
,
M.
, and
Hargrave
,
G. K.
,
1989
, “
An Experimental Study of a Turbulent Natural Gas Jet in a Cross-Flow
,”
Combust. Sci. Technol.
,
66
(
4–6
), pp.
217
232
. 10.1080/00102208908947151
11.
Botros
,
P. E.
, and
Brzustowski
,
T. A.
,
1979
, “
An Experimental and Theoretical Study of the Turbulent Diffusion Flame in Cross-Flow
,”
Symp. (Int.) Combust.
,
17
(
1
), pp.
389
398
. 10.1016/S0082-0784(79)80040-5
12.
Bourguignon
,
E.
,
Johnson
,
M. R.
, and
Kostiuk
,
L. W.
,
1999
, “
The Use of a Closed-Loop Wind Tunnel for Measuring the Combustion Efficiency of Flames in a Cross Flow
,”
Combust. Flame
,
119
(
3
), pp.
319
334
. 10.1016/S0010-2180(99)00068-1
13.
Brzustowski
,
T. A.
,
1976
, “
Flaring in the Energy Industry
,”
Prog. Energy Combust. Sci.
,
2
(
3
), pp.
129
141
. 10.1016/0360-1285(76)90009-5
14.
Brzustowski
,
T. A.
,
Gollahalli
,
S. R.
, and
Sullivan
,
H. F.
,
1975
, “
The Turbulent Hydrogen Diffusion Flame in a Cross-Wind
,”
Combust. Sci. Technol.
,
11
(
1–2
), pp.
29
33
. 10.1080/00102207508946681
15.
Fairweather
,
M.
,
Jones
,
W. P.
,
Lindstedt
,
R. P.
, and
Marquis
,
A. J.
,
1991
, “
Predictions of a Turbulent Reacting Jet in a Cross-Flow
,”
Combust. Flame
,
84
(
3–4
), pp.
361
375
. 10.1016/0010-2180(91)90012-Z
16.
Gollahalli
,
S. R.
,
Brzustowski
,
T. A.
, and
Sullivan
,
H. F.
,
1975
, “
Characteristics of a Turbulent Propane Diffusion Flame in a Cross-Wind
,”
Trans. Canad. Mech. Eng.
,
3
, pp.
205
214
. 10.1139/tcsme-1975-0028
17.
Gollahalli
,
S. R.
, and
Nanjundappa
,
B.
,
1995
, “
Burner Wake Stabilized Gas Jet Flames in Cross-Flow
,”
Combust. Sci. Technol.
,
109
(
1–6
), pp.
327
346
. 10.1080/00102209508951908
18.
Gollahalli
,
S. R.
, and
Pardiwalla
,
D.
,
2002
, “
Comparison of the Flame Characteristics of Turbulent Circular and Elliptic Jets in a Crossflow
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
197
203
. 10.1115/1.1488170
19.
Johnson
,
M. R.
, and
Kostiuk
,
L. W.
,
2000
, “
Efficiencies of Low-Momentum Jet Diffusion Flames in Crosswinds
,”
Combust. Flame
,
123
(
1–2
), pp.
189
200
. 10.1016/S0010-2180(00)00151-6
20.
Johnson
,
M. R.
,
Wilson
,
D. J.
, and
Kostiuk
,
L. W.
,
2001
, “
A Fuel Stripping Mechanism for Wake-Stabilized Jet Diffusion Flames in Crossflow
,”
Combust. Sci. Technol.
,
169
(
1
), pp.
155
174
. 10.1080/00102200108907844
21.
Kalghatgi
,
G. T.
,
1981
, “
Blow-Out Stability of Gaseous Jet Diffusion Flames Part II: Effect of Cross Wind
,”
Combust. Sci. Technol.
,
26
(
5–6
), pp.
241
244
. 10.1080/00102208108946965
22.
Kostiuk
,
L. W.
,
Mejeski
,
A. J.
,
Poudenx
,
P.
,
Johnson
,
M. R.
, and
Wilson
,
D. J.
,
2000
, “
Scaling of Wake-Stabilized Jet Diffusion Flames in a Transverse Air Stream
,”
P. Combust. Inst.
,
28
(
1
), pp.
553
559
. 10.1016/S0082-0784(00)80255-6
23.
Ellzey
,
J. L.
,
Berbe
,
J. G.
,
Tay
,
E. Z. F.
, and
Foster
,
D. E.
,
1990
, “
Total Soot Yield From a Propane Diffusion Flame in Cross-Flow
,”
Combust. Sci. Technol.
,
71
(
1–3
), pp.
41
52
. 10.1080/00102209008951623
24.
Majeski
,
A. J.
,
Wilson
,
D. J.
, and
Kostiuk
,
L. W.
,
2004
, “
Predicting the Length of Low-Momentum Jet Diffusion Flames in Crossflow
,”
Combust. Sci. Technol.
,
176
(
12
), pp.
2001
2025
. 10.1080/00102200490514769
25.
Sullivan
,
R.
,
Wilde
,
B.
,
Noble
,
D. R.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Time-Averaged Characteristics of a Reacting Fuel Jet in Vitiated Cross-Flow
,”
Combust. Flame
,
61
(
7
), pp.
1792
1803
. 10.1016/j.combustflame.2013.12.022
26.
Huang
,
R. F.
, and
Chang
,
J. M.
,
1994
, “
The Stability and Visualized Flame and Flow Structures of a Combusting Jet in Cross Flow
,”
Combust. Flame
,
98
(
3
), pp.
267
278
. 10.1016/0010-2180(94)90241-0
27.
Huang
,
R. F.
, and
Yang
,
M. J.
,
1996
, “
Thermal and Concentration Fields of Burner-Attached Jet Flames in Cross Flow
,”
Combust. Flame
,
105
(
1–2
), pp.
211
224
. 10.1016/0010-2180(95)00193-X
28.
Huang
,
R. F.
, and
Chang
,
J. M.
,
1994
, “
Coherent Structure in a Combusting Jet in Crossflow
,”
AIAA J.
,
32
(
6
), pp.
1120
1125
. 10.2514/3.12110
29.
Huang
,
R. F.
,
Kimilu
,
R. K.
, and
Hsu
,
C. M.
,
2016
, “
Effects of Jet Pulsation Intensity on a Wake-Stabilized Non-Premixed Jet Flame in Crossflow
,”
Exp. Therm. Fluid Sci.
,
78
, pp.
153
166
. 10.1016/j.expthermflusci.2016.06.002
30.
Huang
,
R. F.
, and
Wang
,
S. M.
,
1999
, “
Characteristic Flow Modes of Wake-Stabilized Jet Flames in a Transverse Air Stream
,”
Combust. Flame
,
117
(
1–2
), pp.
59
77
. 10.1016/S0010-2180(98)00070-4
31.
Savas
,
O.
,
Huang
,
R. F.
, and
Gollahalli
,
S. R.
,
1997
, “
Structure of the Flow Field of a Nonpremixed Gas Jet Flame in Cross-Flow
,”
ASME J. Energy Resour. Technol.
,
119
(
2
), pp.
137
144
. 10.1115/1.2794977
32.
Gollahalli
,
S. R.
,
Khanna
,
T.
, and
Prabhu
,
N.
,
1992
, “
Diffusion Flames of Gas Jets Issued From Circular and Elliptic Nozzles
,”
Combust. Sci. Technol.
,
86
(
1–6
), pp.
267
288
. 10.1080/00102209208947199
33.
Song
,
G. P.
,
Papanikolaou
,
N.
, and
Mohamad
,
A. A.
,
2004
, “
Flame Stability With Elliptical Nozzles in a Crossflow
,”
Combust. Sci. Technol.
,
176
(
3
), pp.
359
379
. 10.1080/714859494
34.
Chao
,
Y.-C.
,
Wu
,
C.-Y.
,
Yuan
,
T.
, and
Cheng
,
T.-S.
,
2010
, “
Stabilization Process of a Lifted Flame Tuned by Acoustic Excitation
,”
Combust. Sci. Technol.
,
174
(
5–6
), pp.
87
110
. 10.1080/713713035
35.
Chen
,
L.-W.
,
Wang
,
Q.
, and
Zhang
,
Y.
,
2013
, “
Flow Characterisation of Diffusion Flame Under Non-Resonant Acoustic Excitation
,”
Exp. Therm. Fluid Sci.
,
45
, pp.
227
233
. 10.1016/j.expthermflusci.2012.11.012
36.
Jocher
,
A.
,
Foo
,
K. K.
,
Sun
,
Z.
,
Dally
,
B.
,
Pitsch
,
H.
,
Alwahabi
,
Z.
, and
Nathan
,
G.
,
2017
, “
Impact of Acoustic Forcing on Soot Evolution and Temperature in Ethylene-Air Flames
,”
P. Combust. Inst.
,
36
(
1
), pp.
781
788
. 10.1016/j.proci.2016.08.025
37.
Saito
,
M.
,
Sato
,
M.
, and
Nishimura
,
A.
,
1998
, “
Soot Suppression by Acoustic Oscillated Combustion
,”
Fuel
,
77
(
9–10
), pp.
973
978
. 10.1016/S0016-2361(97)00286-X
38.
Hardalupas
,
Y.
, and
Selbach
,
A.
,
2002
, “
Imposed Oscillations and Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
28
(
1
), pp.
75
104
. 10.1016/S0360-1285(01)00010-7
39.
Lakshminarasimhan
,
K.
,
Clemens
,
N. T.
, and
Ezekoye
,
O. A.
,
2006
, “
Characteristics of Strongly-Forced Turbulent Jets and Non-Premixed Jet Flames
,”
Exp. Fluids
,
41
(
4
), pp.
523
542
. 10.1007/s00348-006-0164-3
40.
Kim
,
T. K.
,
Park
,
J.
, and
Shin
,
H. D.
,
1993
, “
Mixing Mechanism Near the Nozzle Exit in a Tone Excited Non-Premixed Jet Flame
,”
Combust. Sci. Technol.
,
89
(
1–4
), pp.
83
100
. 10.1080/00102209308924104
41.
Kimilu
,
R. K.
,
Huang
,
R. F.
, and
Hsu
,
C. M.
,
2016
, “
Non-Premixed Burner-Attached Jet Flames in Crossflow Pulsed at Resonance Frequency
,”
J. Propul. Power
,
33
(
6
), pp.
1332
1350
. 10.2514/1.B36270
42.
El Behery
,
R. E.
,
Mohamad
,
A. A.
, and
Kamal
,
M. M.
,
2005
, “
Combustion Enhancement of a Gas Flare Using Acoustical Excitation
,”
Combust. Sci. Technol.
,
177
(
9
), pp.
1627
1659
. 10.1080/00102200590956722
43.
Marr
,
K. C.
,
Clemens
,
N. T.
, and
Ezekoye
,
O. A.
,
2012
, “
Mixing Characteristics and Emissions of Strongly-Forced Non-Premixed and Partially-Premixed Jet Flames in Crossflow
,”
Combust. Flame
,
159
(
2
), pp.
707
721
. 10.1016/j.combustflame.2011.08.008
44.
Han
,
D.
, and
Mungal
,
M. G.
,
2003
, “
Simultaneous Measurements of Velocity and CH Distribution. Part II: Deflected Jet Flames
,”
Combust. Flame
,
133
(
1–2
), pp.
1
17
. 10.1016/S0010-2180(02)00551-5
45.
Han
,
D. H.
, and
Mungal
,
M. G.
,
2002
, “
Stabilization in Turbulent Lifted Deflected-Jet Flames
,”
P. Combust. Inst.
,
29
(
2
), pp.
1889
1895
. 10.1016/S1540-7489(02)80229-2
46.
Kalghatgi
,
G. T.
,
1982
, “
Blow-Out Stability of Gaseous Jet Diffusion Flames: Part III Effect of Burner Orientation to Wind Direction
,”
Combust. Sci. Technol.
,
28
(
5–6
), pp.
241
245
. 10.1080/00102208208952558
47.
Mosiria
,
D. B.
,
Huang
,
R. F.
, and
Hsu
,
C. M.
,
2018
, “
Characteristics of Backward-Inclined Non-Premixed Jet Flames in Crossflow
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
429
444
. 10.1016/j.expthermflusci.2018.06.029
48.
Mosiria
,
D. B.
,
Huang
,
R. F.
, and
Hsu
,
C. M.
,
2019
, “
Effects of Small Backward Inclination on Characteristics of a Stack-Issued Combusting Transverse Jet in Crossflow
,”
Heat Mass Transfer
,
55
(
3
), pp.
733
751
. 10.1007/s00231-018-2457-5
49.
Mosiria
,
D. B.
,
Huang
,
R. F.
, and
Hsu
,
C. M.
,
2019
, “
Backward-Inclined Diffusion Jet Flames in Crossflow at Low Jet-to-Crossflow Momentum Flux Ratios
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051501
. 10.1115/1.4041870
50.
Hsu
,
C. M.
, and
Huang
,
R. F.
,
2012
, “
Effects of Acoustic Excitation at Resonance Strouhal Numbers on Characteristics of an Elevated Transverse Jet
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1370
1382
. 10.1016/j.expthermflusci.2011.05.005
51.
Huang
,
R. F.
, and
Hsu
,
C. M.
,
2012
, “
Flow and Mixing Characteristics of an Elevated Pulsating Transverse Jet
,”
Phys. Fluids
,
24
(
1
), p.
015104
. 10.1063/1.3678333
52.
Ginevsky
,
A. S.
,
Vlasov
,
Y. V.
, and
Karavosov
,
R. K.
,
2004
,
Acoustic Control of Turbulent Jets
,
2nd ed.
,
Springer–Verlag
,
Berlin
,
33
42
.
53.
Steele
,
W. G.
,
Taylor
,
R. P.
,
Burrell
,
R. E.
, and
Coleman
,
H. W.
,
1993
, “
Use of Previous Experience to Estimate Precision Uncertainty of Small Sample Experiments
,”
AIAA J.
,
31
(
10
), pp.
1891
1896
. 10.2514/3.11864
54.
Luo
,
M. C.
,
1997
, “
Effects of Radiation on Temperature Measurement in a Fire Environment
,”
J. Fire Sci.
,
15
(
6
), pp.
443
461
. 10.1177/073490419701500602
55.
Khouygani
,
M. G.
,
Huang
,
R. F.
, and
Hsu
,
C. M.
,
2016
, “
Flow and Dispersion Characteristics of a Stack-Issued Backward Inclined Jet in Crossflow
,”
J. Mech.
,
33
(
6
), pp.
841
852
. 10.1017/jmech.2016.97
56.
Khouygani
,
M. G.
,
Huang
,
R. F.
, and
Hsu
,
C. M.
,
2015
, “
Flow Characteristics in Median Plane of a Backward-Inclined Elevated Transverse Jet
,”
Exp. Therm. Fluid Sci.
,
62
, pp.
164
174
. 10.1016/j.expthermflusci.2014.12.009
57.
Wang
,
Q.
,
Zhang
,
Y.
,
Tang
,
H. J.
, and
Zhu
,
M.
,
2012
, “
Visualization of Diffusion Flame/Vortex Structure and Dynamics Under Acoustic Excitation
,”
Combust. Sci. Technol.
,
184
(
10–11
), pp.
1445
1455
. 10.1080/00102202.2012.693419
58.
Wang
,
Q.
,
Huang
,
H.
,
Tan
,
H. J.
,
Zhu
,
M.
, and
Zhang
,
Y.
,
2012
, “
Nonlinear Response of Buoyant Diffusion Flame Under Acoustic Excitation
,”
Fuel
,
94
, pp.
102
109
. 10.1021/ef201134m
You do not currently have access to this content.