Abstract

Genetic algorithms (GAs) are considered to be one of the main types of evolutionary algorithms (EAs) and are being increasingly used in various engineering design applications. To a large extent, plate-fin heatsinks are used in the thermal management of compact electronic equipment and data centers. The shape optimization of the heatsinks is not rigorously investigated during the design process of high power electronics. Any improvements in the effectiveness of the heatsinks impact the energy consumed by large-scale information communication technology (ICT) facilities including data centers and telecommunication systems and promote a more sustainable use of raw materials. This paper investigates the optimization of plate-fin heatsinks by modifying the fin layout in a forced crossflow using a multi-objective genetic algorithm (MOGA) combined with computational fluid dynamics (CFD) simulations. The main objective is to improve the heat dissipation rate by modifying geometric parameters, i.e., the number, arrangement, and orientation of fins. For a generic heatsink test case, the optimized performance is examined in terms of thermal resistance, turbulence intensity, pumping power, coefficient of performance, and Chilton–Colburn j-factors. Among all of the cases investigated, the input parameter optimization configurations which coupled and rotated fins in groups of ten proved to be the most successful. For one case, an 18% increase in the effectiveness of heat dissipation is reported. However, when weight reduction was considered by dividing by the unit mass, the designs in one of the investigated families which remove a number of fins from the heatsink outperformed the rest, achieving improvements of 65% over the baseline.

References

References
1.
Garimella
,
S. V.
,
Persoons
,
T.
,
Weibel
,
J. A.
, and
Gektin
,
V.
,
2017
, “
Electronics Thermal Management in Information and Communications Technologies: Challenges and Future Directions
,”
IEEE Trans. Compon. Packaging Manuf. Technol.
,
7
(
8
), pp.
1191
1205
. 10.1109/TCPMT.2016.2603600
2.
Garimella
,
S. V.
,
Persoons
,
T.
,
Weibel
,
J.
, and
Yeh
,
L.-T.
,
2013
, “
Technological Drivers in Data Centers and Telecom Systems: Multiscale Thermal, Electrical, and Energy Management
,”
Appl. Energy
,
107
, pp.
66
80
. 10.1016/j.apenergy.2013.02.047
3.
Ledezma
,
G.
, and
Bejan
,
A.
,
1996
, “
Heatsinks With Sloped Plate Fins in Natural and Forced Convection
,”
Int. J. Heat Mass Transfer
,
39
(
9
), pp.
1773
1783
. 10.1016/0017-9310(95)00297-9
4.
Kim
,
D.-K.
,
2012
, “
Thermal Optimization of Plate-Fin Heatsinks With Fins of Variable Thickness Under Natural Convection
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
752
761
. 10.1016/j.ijheatmasstransfer.2011.10.034
5.
Iyengar
,
M.
, and
Bar-Cohen
,
A.
,
2003
, “
Least-Energy Optimization of Forced Convection Plate-Fin Heatsinks
,”
IEEE Trans. Compon. Packaging. Technol.
,
26
(
1
), pp.
62
70
. 10.1109/TCAPT.2003.811484
6.
Islamoglu
,
Y.
, and
Parmaksizoglu
,
C.
,
2004
, “
Numerical Investigation of Convective Heat Transfer and Pressure Drop in a Corrugated Heat Exchanger Channel
,”
Appl. Therm. Eng.
,
24
(
1
), pp.
141
147
. 10.1016/j.applthermaleng.2003.07.004
7.
Didarul
,
I. M.
,
Kenyu
,
O.
,
Minoru
,
Y.
, and
Izuru
,
S.
,
2007
, “
Study on Heat Transfer and Fluid Flow Characteristics With Short Rectangular Plate Fin of Different Pattern
,”
Exp. Therm. Fluid Sci.
,
31
(
4
), pp.
367
379
. 10.1016/j.expthermflusci.2006.05.009
8.
Bhattacharya
,
A.
, and
Mahajan
,
R.
,
2006
, “
Metal Foam and Finned Metal Foam Heatsinks for Electronics Cooling in Buoyancy-Induced Convection
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
259
266
. 10.1115/1.2229225
9.
Sparrow
,
E. M.
,
Niethammer
,
J. E.
, and
Chaboki
,
A.
,
1982
, “
Heat Transfer and Pressure Drop Characteristics of Arrays of Rectangular Modules Encountered in Electronic Equipment
,”
Int. J. Heat Mass Transfer
,
25
(
7
), pp.
961
973
. 10.1016/0017-9310(82)90071-0
10.
Choi
,
J.-Y.
, and
Kim
,
K.-Y.
,
2005
, “
Shape Optimization of a Dimpled Channel to Enhance Turbulent Heat Transfer
,”
Numer. Heat Transfer Part A
,
48
(
9
), pp.
901
915
. 10.1080/10407780500226571
11.
Lin
,
P. T.
,
Manuel
,
M. C. E.
,
Zhang
,
J.
,
Jaluria
,
Y.
, and
Gea
,
H. C.
,
2017
, “
Multi-Objective Design Optimization of Multiple Microchannel Heat Transfer Systems Based on Multiple Prioritized Preferences
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021011
. 10.1115/1.4035836
12.
Park
,
K.
,
Choi
,
D.-H.
, and
Lee
,
K.-S.
,
2004
, “
Numerical Shape Optimization for High Performance of a Heatsink With Pin-Fins
,”
Numer. Heat Transfer Part A
,
46
(
9
), pp.
909
927
. 10.1080/104077890503934
13.
Karathanassis
,
I. K.
,
Papanicolaou
,
E.
,
Belessiotis
,
V.
, and
Bergeles
,
G. C.
,
2013
, “
Multiobjective Design Optimization of a Micro Heatsink for Concentrating Photovoltaic/Thermal (CPVT) Systems Using a Genetic Algorithm
,”
Appl. Therm. Eng.
,
59
(
12
), pp.
733
744
. 10.1016/j.applthermaleng.2012.06.034
14.
Horiuchi
,
K.
,
Nishihara
,
A.
, and
Sugimura
,
K.
,
2015
, “
Multi-Objective Optimization of Water-Cooled Pinfin Heatsinks
,”
Int. J. Heat Mass Transfer
,
81
, pp.
760
766
. 10.1016/j.ijheatmasstransfer.2014.10.057
15.
Chen
,
C.-T.
, and
Chen
,
H.-I.
,
2013
, “
Multi-Objective Optimization Design of Plate-Fin Heatsinks Using a Direction-Based Genetic Algorithm
,”
J. Taiwan Inst. Chem. Eng.
,
44
(
2
), pp.
257
265
. 10.1016/j.jtice.2012.11.012
16.
Younes
,
M.
, and
Potiron
,
A.
,
2001
, “
A Genetic Algorithm for the Shape Optimization of Parts Subjected to Thermal Loading
,”
Numer. Heat Transfer Part A
,
39
(
5
), pp.
449
470
. 10.1080/104077801750111548
17.
Abdelsalam
,
Y. O.
,
Alimohammad
,
S.
,
Pelletier
,
Q.
, and
Persoons
,
T.
,
2017
, “
A Multi-Objective Genetic Algorithm Optimization of Plate-Fin Heatsinks
,”
IEEE 23rd International Workshop Thermal Investigations of ICs and Systems
,
Amsterdam
,
Sept. 27–29
.
18.
Tye-Gingras
,
M.
, and
Gosselin
,
L.
,
2008
, “
Thermal Resistance Minimization of a Fin-and-Porous-Medium Heatsink With Evolutionary Algorithms
,”
Numer. Heat Transfer Part A: Appl.
,
54
(
4
), pp.
349
366
. 10.1080/10407780802148481
19.
Cavazzuti
,
M.
, and
Corticelli
,
M. A.
,
2008
, “
Optimization of Heat Exchanger Enhanced Surfaces Through Multi Objective Genetic Algorithms
,”
Numer. Heat Transfer Part A
,
54
(
6
), pp.
603
624
. 10.1080/10407780802289335
20.
Teertstra
,
P.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2000
, “
Analytical Forced Convection Modeling of Plate Fin Heatsinks
,”
J. Electron. Manuf.
,
10
(
4
), pp.
253
261
. 10.1142/S0960313100000320
21.
Incopera
,
F. P.
,
Bergman
,
T. L.
,
Lavine
,
A. S.
, and
Dewitt
,
D. P.
,
2012
,
Introduction to Heat Transfer
,
6th ed.
,
Wiley
,
New Jersey
, pp.
68
70
.
22.
Okiishi
,
T. H.
,
Munson
,
B. R.
,
Young
,
D. F.
, and
Huebsch
,
W. W.
,
2009
,
Fundamentals of Fluid Mechanics
,
6th ed.
,
Wiley
,
New Jersey
, pp.
95
123
.
23.
ansys Inc.
,
2013
,
ANSYS Fluent User’s Guide
,
ANSYS Inc.
,
Pennsylvania
, pp.
257
261
.
25.
Alimohammadi
,
S.
,
Baudin
,
N.
,
Kempers
,
R.
, and
Persoons
,
T.
,
2017
, “
Multi-Objective Shape Optimisation of Natural Convection Cooled Plate-Fin Heatsinks With Localised Heat Sources
,”
2nd Thermal and Fluids Engineering Conference, TFEC2017
,
Las Vegas, NV
,
Apr. 2–5
, pp.
663
666
10.1615/TFEC2017.cfs.018339.
26.
Alimohammadi
,
S.
,
Persoons
,
T.
,
Murray
,
D. B.
,
Tehrani
,
M. S.
,
Farhanieh
,
B.
, and
Koehler
,
J.
,
2013
, “
A Validated Numerical-Experimental Design Methodology for a Movable Supersonic Ejector Compressor for Waste-Heat Recovery
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
2
), p.
021001
. 10.1115/1.4025090
27.
Alimohammadi
,
S.
,
Murray
,
D. B.
, and
Persoons
,
T.
,
2014
, “
Experimental Validation of a CFD Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet
,”
J. Heat Transfer
,
136
(
9
), p.
091703
. 10.1115/1.4027840
You do not currently have access to this content.