Abstract

In the present research, the thermohydraulic performance of a solar air heater having artificial roughness in the form of arc-shaped ribs with multiple gaps has been investigated experimentally and compared with that of a solar air heater having smooth absorber plate. The performance has been investigated in terms of enhancement in the Nusselt number and friction factor. Results of the present work have also been compared with previously published work. Reynolds number and arc angle (α) were varied from 3000 to 18,000 and 30 deg to 75 deg, respectively. Present roughness results in a higher rate of heat transfer from the absorber surface to air, but it also imposes a penalty in terms of the increased friction factor. Maximum enhancement in Nusselt number, friction factor, and thermohydraulic performance parameter for the roughened absorber surface is found to be 3.74, 2.69, and 2.75 times that of the smooth plate, respectively. Correlations of heat transfer and friction factor for proposed roughness have also been developed.

References

References
1.
Ravi
,
R. K.
, and
Saini
,
R. P.
,
2018
, “
Nusselt Number and Friction Factor Correlations for Forced Convective Type Counter Flow Solar Air Heater Having Discrete Multi V Shaped and Staggered rib Roughness on Both Sides of the Absorber Plate
,”
Appl. Therm. Eng.
,
129
, pp.
735
746
. 10.1016/j.applthermaleng.2017.10.080
2.
Hans
,
V. S.
,
Gill
,
R. S.
, and
Singh
,
S.
,
2017
, “
Heat Transfer and Friction Factor Correlations for a Solar Air Heater Duct Roughened Artificially With Broken Arc Ribs
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
77
89
. 10.1016/j.expthermflusci.2016.07.022
3.
Kumar
,
R.
,
Kumar
,
A.
,
Sharma
,
A.
,
Chauhan
,
R.
, and
Sethi
,
M.
,
2017
, “
Experimental Study of Heat Transfer Enhancement in a Rectangular Duct Distributed by Multi V-Perforated Baffle of Different Relative Baffle Width
,”
Heat Mass Transf. Und Stoffuebertragung
,
53
(
4
), pp.
1289
1304
. 10.1007/s00231-016-1901-7
4.
Gill
,
R. S.
,
Hans
,
V. S.
,
Saini
,
J. S.
, and
Singh
,
S.
,
2017
, “
Investigation on Performance Enhancement Due to Staggered Piece in a Broken Arc Rib Roughened Solar Air Heater Duct
,”
Renew. Energy
,
104
, pp.
148
162
. 10.1016/j.renene.2016.12.002
5.
Kumar
,
K.
,
Prajapati
,
D. R.
, and
Samir
,
S.
,
2017
, “
Heat Transfer and Friction Factor Correlations Development for Solar Air Heater Duct Artificially Roughened With ‘S’ Shape Ribs
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
249
261
. 10.1016/j.expthermflusci.2016.11.012
6.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2019
, “
Performance Improvement and Development of Correlation for Friction Factor and Heat Transfer Using Computational Fluid Dynamics for Ribbed Triangular Duct Solar Air Heater
,”
Renew. Energy
,
131
, pp.
788
799
. 10.1016/j.renene.2018.07.078
7.
Bharadwaj
,
G.
,
Kumar
,
R.
, and
Sharma
,
A.
,
2017
, “
Heat Transfer Augmentation and Flow Characteristics in Ribbed Triangular Duct Solar Air Heater : An Experimental Analysis
,”
Int. J. Green Energy
,
14
(
7
), pp.
587
598
. 10.1080/15435075.2017.1307751
8.
Kumar
,
R.
,
Varun
,
A.
, and
Kumar
,
2018
, “
Experimental and Computational Fluid Dynamics Study on Fluid Flow and Heat Transfer in Triangular Passage Solar Air Heater of Different Configurations
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041013
. 10.1115/1.4036775
9.
Singh
,
S.
,
2017
, “
Performance Evaluation of a Novel Solar Air Heater With Arched Absorber Plate
,”
Renew. Energy
,
114
, pp.
879
886
. 10.1016/j.renene.2017.07.109
10.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD Investigation of Convection Heat Transfer in Solar Air Heater With Reverse L-Shaped Ribs
,”
Sol. Energy
,
131
, pp.
275
295
. 10.1016/j.solener.2016.02.040
11.
Maithani
,
R.
, and
Saini
,
J. S.
,
2017
, “
Performance Evaluation of Solar Air Heater Having V-Ribs With Symmetrical Gaps in a Rectangular Duct of Solar Air Heater
,”
Int. J. Ambient Energy
,
38
(
4
), pp.
400
410
. 10.1080/01430750.2015.1133455
12.
Skullong
,
S.
,
Promvonge
,
P.
,
Thianpong
,
C.
, and
Pimsarn
,
M.
,
2016
, “
Thermal Performance in Solar Air Heater Channel With Combined Wavy-Groove and Perforated-Delta Wing Vortex Generators
,”
Appl. Therm. Eng.
,
100
, pp.
611
620
. 10.1016/j.applthermaleng.2016.01.107
13.
Handoyo
,
E. A.
,
Ichsani
,
D.
, and
Prabowo
,
S.
,
2016
, “
Numerical Studies on the Effect of Delta-Shaped Obstacles’ Spacing on the Heat Transfer and Pressure Drop in v-Corrugated Channel of Solar Air Heater
,”
Sol. Energy
,
131
, pp.
47
60
. 10.1016/j.solener.2016.02.031
14.
Gawande
,
V. B.
,
Zodpe
,
A. S. D. D. B.
, and
Chamoli
,
S.
,
2015
, “
Experimental and CFD-Based Thermal Performance Prediction of Solar Air Heater Provided With Chamfered Square Rib as Artificial Roughness
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
38
(
2
), pp.
643
663
. 10.1007/s40430-015-0402-9
15.
Jin
,
D.
,
Zhang
,
M.
,
Wang
,
P.
, and
Xu
,
S.
,
2015
, “
Numerical Investigation of Heat Transfer and Fluid Flow in a Solar Air Heater Duct With Multi V-Shaped Ribs on the Absorber Plate
,”
Energy
,
89
, pp.
178
190
. 10.1016/j.energy.2015.07.069
16.
Kulkarni
,
K.
, and
Kim
,
K.-Y.
,
2016
, “
Comparative Study of Solar Air Heater Performance With Various Shapes and Configurations of Obstacles
,”
Heat Mass Transf.
,
52
(
12
), pp.
2795
2811
. 10.1007/s00231-016-1788-3
17.
Saini
,
S. K.
, and
Saini
,
R. P.
,
2008
, “
Development of Correlations for Nusselt Number and Friction Factor for Solar Air Heater With Roughened Duct Having Arc-Shaped Wire as Artificial Roughness
,”
Sol. Energy
,
82
(
12
), pp.
1118
1130
. 10.1016/j.solener.2008.05.010
18.
Kumar
,
S.
, and
Saini
,
R. P.
,
2009
, “
CFD Based Performance Analysis of a Solar Air Heater Duct Provided With Artificial Roughness
,”
Renew. Energy
,
34
, pp.
1285
1291
. 10.1016/j.renene.2008.09.015
19.
Singh
,
A. P.
,
Goel
,
V.
,
Vashishtha
,
S.
, and
Kumar
,
A.
,
2016
, “
Heat Transfer Enhancement in a Solar Air Heater With Roughened Duct Having Arc-Shaped Elements as Roughness Element on the Absorber Plate
,”
J. Inst. Eng. Ser. C
,
97
(
3
), pp.
381
388
. 10.1007/s40032-016-0240-2
20.
Singh
,
A. P.
, and
Varun
,
S.
,
2014
, “
Effect of Artificial Roughness on Heat Transfer and Friction Characteristics Having Multiple Arc Shaped Roughness Element on the Absorber Plate
,”
Sol. Energy
,
105
, pp.
479
493
. 10.1016/j.solener.2014.04.007
21.
Pandey
,
N. K.
, and
Bajpai
,
V. K.
,
2016
, “
Experimental Investigation of Heat Transfer Augmentation Using Multiple Arcs With Gap on Absorber Plate of Solar air Heater
,”
Sol. Energy
,
134
, pp.
314
326
. 10.1016/j.solener.2016.05.007
22.
Kumar
,
A.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2012
, “
Experimental Investigation on Heat Transfer and Fluid Flow Characteristics of Air Flow in a Rectangular Duct With Multi v-Shaped Rib With Gap Roughness on the Heated Plate
,”
Sol. Energy
,
86
, pp.
1733
1749
. 10.1016/j.solener.2012.03.014
23.
ASHRAE
,
1977
, “
Methods of Testing to Determine the Thermal Performance of Solar. Collectors
,” ASHRAE Standards 93-77,
New York
.
24.
Jain
,
S. K.
,
Das Agrawal
,
G.
, and
Misra
,
R.
,
2019
, “
Heat Transfer Augmentation Using Multiple Gaps in Arc-Shaped Ribs Roughened Solar Air Heater: An Experimental Study
,”
Energy Sources Part A Recover. Util. Environ. Eff.
, pp.
1
12
. 10.1080/15567036.2019.1607945
25.
Jain
,
S. K.
,
Das Agrawal
,
G.
,
Misra
,
R.
,
Verma
,
P.
,
Rathore
,
S.
, and
Jamuwa
,
D. K.
,
2019
, “
Performance Investigation of a Triangular Solar Air Heater Duct Having Broken Inclined Roughness Using Computational Fluid Dynamics
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061008
. 10.1115/1.4043751
26.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transf.
,
15
, pp.
1647
1658
. 10.1016/0017-9310(72)90095-6
27.
Kline
,
S.
, and
McClintock
,
A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
J. Mech. Eng.
,
75
, pp.
3
8
. 10.1111/jcmm.13453
28.
Nikuradse
,
J.
,
1943
, “
Law of Flow in Rough Pipes
,”
J. Appl. Phys.
,
14
, pp.
399
405
. 10.1063/1.1715007
29.
Dipprey
,
D. F.
, and
Sabersky
,
R. H.
,
1963
, “
Heat and Momentum Transfer in Smooth and Rough Tubes at Various Prandtl Numbers
,”
Int. J. Heat Mass Transf.
,
6
, pp.
329
353
. 10.1016/0017-9310(63)90097-8
You do not currently have access to this content.